Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:46:29.140Z Has data issue: false hasContentIssue false

Vanadium Dioxide Films Grown from Vanadium Tetrakis(t-Butoxide) by the Sol-Gel Process

Published online by Cambridge University Press:  25 February 2011

K. R. Speck
Affiliation:
The Johns Hopkins University Applied Physics Laboratory Laurel, Maryland 20707, USA.
H. S-W. Hu
Affiliation:
The Johns Hopkins University Applied Physics Laboratory Laurel, Maryland 20707, USA.
R. A. Murphy
Affiliation:
The Johns Hopkins University Applied Physics Laboratory Laurel, Maryland 20707, USA.
R. S. Potember
Affiliation:
The Johns Hopkins University Applied Physics Laboratory Laurel, Maryland 20707, USA.
Get access

Abstract

Vanadium dioxide thin films have been grown from vanadium tetrakis (t-butoxide) by the sol-gel process. A new method for the synthesis of the vanadium precursor was developed. Films were deposited by dipcoating glass slides from an isopropanol solution, followed by post-deposition annealing of the films at 600 °C under nitrogen. The properties of these films, to a high degree, were a function of the preparation conditions. These gel-derived VO2 films undergo a reversible semiconductor-to-metal phase transition near 72 °C, exhibiting characteristic resistive and spectral switching comparable with near stoichiometric VO2 films prepared on non-crystalline substrates by other techniques. Paralleling the investigation of pure VO2, films were doped with hexavalent transition metal oxides to demonstrate lowering of the transition temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Morin, F. J., Phys. Rev. Lett., 3 (1959) 34.CrossRefGoogle Scholar
2 Adler, D., Rev. Mod. Phys., 40 (1968) 714.CrossRefGoogle Scholar
3 Verleur, H. W., Barker, A. S. Jr, and Berlund, C. N., Phys. Rev. Lett., 172 (1968) 788.Google Scholar
4 Berglund, C.N. and Guggenheim, H. J., Phys. Rev., 185 (1969) 1022.CrossRefGoogle Scholar
5 Chudnovskii, F. A., Sov. Phys. Tech. Phys., 20 (1976) 999.Google Scholar
6 Jorgenson, G. V. and Lee, J. C., Solar Energy Materials, 14 (1986) 205.CrossRefGoogle Scholar
7 Greenberg, C. B., Thin Solid Films, 110 (1983) 73.Google Scholar
8 MacChesney, J. B. and Guggenheim, H. J., J. Phys. Chem. Solids, 30 (1969) 225.Google Scholar
9 Goodenough, J. B., J. Solid State Chem., 3 (1971) 490.Google Scholar
10 Griffiths, C. H. and Eastwood, H. K., J. Appl. Phys., 45 (1974) 2201.Google Scholar
11 Fukuma, M., Zembutsu, S., and Miyazawa, S., Appl. Opt., 22 (1983) 2651.Google Scholar
12 Rayabova, L. A., Serbinov, I. A., and Darevsky, A. S., J. Electrochem. Soc, 119 (1972) 427.Google Scholar
13 MacChesney, J. B., Potter, J. F., and Guggenheim, H. J., J. Electrochem. Soc, 115 (1968) 52.CrossRefGoogle Scholar
14 Bradley, D. C. and Mecha, M. L., Can. J. Chem., 40 (1962) 1183.Google Scholar
15 Razuvaev, G. A., Latyaeva, V. N., Drobotenko, V. V., Linyova, A. N., Vishinskaya, L. I., and Ckerkasov, V. K., J. Organometallic Chem., 131 (1977) 43.Google Scholar
16 Phillips, T. E., Murphy, R. A., and Poehler, T. O., Mat. Res. Bull., 22 (1987) 1113.CrossRefGoogle Scholar
17 Speck, K. R., Hu, H. S-W., Sherwin, M. E., and R. S Pótember, submitted to Thin Solid Films.Google Scholar
18 Rozgoyi, G. A. and Hensler, D H., J. Vac. Sci. Tech., 5 (1968) 194.Google Scholar