Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T02:36:25.096Z Has data issue: false hasContentIssue false

Vacuum Electroreflectance: Overcoming the Difficulties of Electrolyte Electroreflectance and Photoreflectance

Published online by Cambridge University Press:  21 February 2011

Silvia L. Mioc
Affiliation:
University of Illinois at Chicago, Physics Department, PO Box 4348, M/C 273, Chicago, IL 60680
Paul M. Raccah
Affiliation:
University of Illinois at Chicago, Physics Department, PO Box 4348, M/C 273, Chicago, IL 60680
James W. Garland
Affiliation:
University of Illinois at Chicago, Physics Department, PO Box 4348, M/C 273, Chicago, IL 60680
Get access

Abstract

A new technique for obtaining the electroreflectance (ER) spectrum, Vacuum Electroreflectance (VER), is introduced. In VER, the modulating electric field is applied capacitively using a transparent electrode as one plate and the sample as the other plate, with vacuum in between. In this geometry, cooling or heating is achieved without any sample preparation. Precise positioning is achieved by piezoelectric motors monitored by a HeNe interferometer, and cooling to 80 K by the Joule-Thompson effect. GaAs samples with different Si doping are used to compare VER to Electrolyte ER and Photoreflectance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seraphin, B. O. in Semiconductors and Semimetals, vol.9, ed. by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1972).Google Scholar
2. Aspnes, D. E. in Handbook on Semiconductors, Vol. 2, ed. by Balkanski, M. (North Holland, New York, 1980).Google Scholar
3. Cardona, M. in Modulation Soectroscopy, (Academic Press, New York, 1969).Google Scholar
4. Pollak, F. H. and Glembocki, O. J., Proc SPIE, 946, 2 (1988).Google Scholar
5. Aspnes, D. E., Surface Science 37, 418, North-Holland, New York (1973).Google Scholar
6. Aspnes, D. E. and Studna, A. A., Phys. Rev. B2, 4605 (1973).Google Scholar
7. Shaklee, K. L., Pollak, F. H., and Cardona, M., Phys. Rev. Lett. L5, 883 (1965).Google Scholar
8. Glembocki, O. J., Appl. Phys. Lett. 46, 970 (1985).Google Scholar
9. Bottka, N., Gaskil, D. K., Griffiths, R. J. M., Bradley, R. R., Joyce, T. B., Ito, C., and McIntyre, D., J. of Cryst. Growth 93, 481 (1988).Google Scholar
10. Gaskill, D. K., Bottka, N., Aina, L. and Mattingly, M., Appl. Phys. Lett. 56, 1269 (1990).Google Scholar
11. Glembocki, O. J., Proc. SPIE 1286, 2 (1990).Google Scholar
12. Seraphin, B.O. and Hess, R. B., Phys. Rev. Lett. 14, 138 (1965).Google Scholar
13. Pikhtin, A. N., Airaksinen, V. M., Lipsanen, H., and Tuomi, T., J. Appl. Phys 65, 2556 (1989).Google Scholar
14. Brierley, S. K. and Lehr, D. S., J. Appl. Phys. 67, 3878 (1990).Google Scholar
15. Garland, J. W. and Raccah, P. M., Proc. SPIE 659, 32 (1986).Google Scholar