Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T15:54:43.842Z Has data issue: false hasContentIssue false

Utilization of Industrial Inkjet Technologies for the Deposition of Conductive Polymers, Functional Oxides and CNTs

Published online by Cambridge University Press:  06 September 2011

Wolfgang Voit
Affiliation:
XaarJet AB, Elektronikhöjden 10, SE-17526 Järfälla, Sweden Department of Materials Science-Tmfy-MSE, Royal Institute of Technology, SE-10044 Stockholm, Sweden
Ingo Reinhold
Affiliation:
XaarJet AB, Elektronikhöjden 10, SE-17526 Järfälla, Sweden
Werner Zapka
Affiliation:
XaarJet AB, Elektronikhöjden 10, SE-17526 Järfälla, Sweden
Lyubov Belova
Affiliation:
Department of Materials Science-Tmfy-MSE, Royal Institute of Technology, SE-10044 Stockholm, Sweden
K.V. Rao
Affiliation:
Department of Materials Science-Tmfy-MSE, Royal Institute of Technology, SE-10044 Stockholm, Sweden
Get access

Abstract

Printing of functional materials requires reliable deposition processes. This work describes the development of printing processes for selected functional materials utilizing industrial-type inkjet printheads. A well-controlled printing process with fluids containing the conductive polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is presented, allowing linear printing speeds of up to 0.35 m/s in single-pass, and smallest line width of approximately 40 μm when printing 7 pL drop volumes. In addition reliable processes for producing ZnO-based films, which enable novel applications for electronic and UV-sensitive devices, and for printing of conductive carbon nanotube layers are shown.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E. P., Science 290, 21232126 (2000).Google Scholar
2. Voit, W., Zapka, W., Dyreklev, P., Hagel, O.J., Hägerström, A. and Sandström, P., Proc. Digital Fabrication 2006, 3437 (2006)Google Scholar
3. Voit, W., Sjöblom, H., Wang, L., Birgerson, J., Fogden, A. and Zapka, W., Proc. NIP 20, 226231 (2004)Google Scholar
4. Voit, W., Zapka, W., Menzel, A., Mezger, F. and Sutter, T., Proc. NIP24 and Digital Fabrication 2008, 678683 (2008)Google Scholar
5. Hoath, S. D., Martin, G. D., Hutchings, I. M., Tuladhar, T. R., Mackley, M. R., Proc. NIP24 and Digital Fabrication 2008, 130133 (2008)Google Scholar
6. Manning, H. J. and Harvey, R. A., Proc. NIP 15, 3539 (1999)Google Scholar
7. Wu, Y., Tamaki, T., Voit, W., Volotinen, T., Belova, L., Rao, K. V., Mater. Res. Soc. Proc. 1161, I0322 (2009)Google Scholar
8. Wu, Y., Girgis, E., Ström, V., Voit, W., Belova, L., Rao, K. V., Phys. Status Solidi (A) 208, 206209 (2010)Google Scholar