Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:11:44.420Z Has data issue: false hasContentIssue false

Use of a Native Oxide of AlxGa1−xAs in the Fabrication of Integrated Laser/Modulators

Published online by Cambridge University Press:  22 February 2011

R.S. Burton
Affiliation:
Integrated Microsystems Laboratory Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
T.E. Schlesinger
Affiliation:
Integrated Microsystems Laboratory Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
Get access

Abstract

A planar self-aligned process for fabricating integrated lasers and modulators is described. This process employs a native oxide of AlxGa1−xAs to form the waveguide structure and dielectric passivation layer. Wet oxidation of AlxGa1−xAs is being investigated to determine possible processing parameters that result in good quality oxides and a reliable fabrication process. Variations in the mechanical properties were observed with changes in processing parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Croydon, A.W.F. and Parker, E.H.C., Dielectric Films on Gallium Arsenide, Electrocomponent Science Monographs Vol. 2, (Gordon and Breach Science Publishers, New York, 1981).Google Scholar
2. Tsang, W.T., Appl. Phys. Lett. 33, 426, (1978).Google Scholar
3. Tsang, W.T., Olmstead, M., Chang, R.P.H., Appl. Phys. Lett. 34, 408, (1979).Google Scholar
4. Shin, J., Geib, K.M., Wilmsen, C.W., Chu, P., and Wieder, H.H., J. Vac. Sci. Technol. A 9, 1029 (1991).Google Scholar
5. Basu, N. and Bhat, K.N., J. Appl. Phys. 63, 5500 (1988).Google Scholar
6. Dallesasse, J.M., Holonyak, N., Jr., Sugg, A.R., Richard, T.A., and El-Zein, N., Appl. Phys. Lett. 57, 2844 (1990).Google Scholar
7. Kish, F.A., Maranowski, S.A., Hofler, G.E., Holonyak, N. Jr., Caracci, S.J., Dallesasse, J.M., and Hsieh, K.C., Appl. Phys. Lett. 60, 3165 (1992).Google Scholar
8. Kish, F.A., Caracci, S.J., Holonyak, N. Jr., Hsieh, K.C., Baker, J.E., Maranowski, S.A., Sugg, A.R., Dallesasse, J.M., Fletcher, R.M., Kuo, C.P., Osentowski, T.D., and Craford, M.G., J. Electron. Mater. 21, 1133 (1992).Google Scholar
9. Nicollian, E.H., Schwartz, B., Koszi, L.A., and Schumaker, N.E., J. Elecrochem. Soc. 125, 989 (1978).Google Scholar
10. Fisher, C.W. and Teare, S.W., Appl. Phys. Lett. 67, 2608 (1990).Google Scholar
11. Chang, R.P.H., Sheng, T.T., Chang, C.C., and Coleman, J.J., Appl. Phys. Lett. 33, 341 (1978).Google Scholar
12. Chang, R.P.H., Coleman, J.J., Polak, A.J., Feldman, L.C., and Chang, C.C., Appl. Phys. Lett. 34, 237 (1979).Google Scholar
13. Dallesasse, J.M. and Holonyak, N. Jr., Appl. Phys. Lett. 58, 394 (1991).Google Scholar
14. Kish, F.A., Caracci, S.J., Holonyak, N. Jr., Dallesasse, J.M., Hsieh, K.C., Ries, M.J., Smith, S.C., and Burnham, R.D., Appl. Phys. Lett. 59 1755 (1991).Google Scholar
15. Dallesasse, J.M., Holonyak, N. Jr., Hall, D.C., El-Zein, N., Sugg, A.R., Smith, S.C., and Burnham, R.D., Appl. Phys. Lett. 58, 834 (1991).Google Scholar
16. Burton, R.S., Schlesinger, T.E., Holmgren, D.J., Smith, S.C., and Burnham, R.D., J. Appl. Phys. 73, 2015 (1993).Google Scholar
17. Burton, R.S., Schlesinger, T.E., Holmgren, D.J., Smith, S.C., and Burnham, R.D., Appl. Phys. Lett. 60, 1776 (1992).Google Scholar
18. Sugg, A.R., Holonyak, N. Jr., Baker, J.E., Kish, F.A., and Dallesasse, J.M., Appl. Phys. Lett. 58, 1199 (1991).Google Scholar
19. Dallesasse, J.M., Holonyak, N. Jr., El-Zein, N., Richard, T.A., Kish, F.A., Sugg, A.R., Burnham, R.D., and Smith, S.C., Appl. Phys. Lett. 58, 974 (1991).Google Scholar