Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:14:02.407Z Has data issue: false hasContentIssue false

The US Department of Energy's Working Group on Photoelectrochemical Hydrogen Production: Promoting Technology-Enabling Breakthroughs in Semiconductor Materials Research

Published online by Cambridge University Press:  31 January 2011

Roxanne Garland
Affiliation:
[email protected], US Department of Energy, EE-2H, 1000 Independence AVE, SW, Washington, District of Columbia, 20585, United States, 202 586 7260
Eric L. Miller
Affiliation:
[email protected], University of Hawaii at Manoa, Hawaii Natural Energy Institute, Honolulu, Hawaii, United States
Get access

Abstract

Photoelectrochemical (PEC) hydrogen production, using sunlight to split water, is an important enabling technology for a future “Green” economy which will rely, in part, on hydrogen as an energy currency. The traditional semiconductor-based PEC material systems studied to date, however, have been unable to meet all the performance, durability and cost requirements for practical hydrogen production. Technology-enabling breakthroughs are needed in the development of new, advanced materials systems, and toward this end, the U.S. Department of Energy’s Working Group on PEC Hydrogen Production is bringing together experts in analysis, theory, synthesis and characterization from the academic, industry and national-laboratory research sectors. Key Working Group activities, as described in this paper, include performing techno-economic analyses of large-scale PEC production systems and establishing standardized testing and screening protocols for candidate PEC materials systems. In addition, a number of Working Group “Task Forces” are focused on advancing critical PEC materials theory, synthesis and characterization capabilities for application in the research and development of broad-ranging materials systems of promise, including complex metal-oxide and -nitride compounds, amorphous silicon alloys, III-V semiconductors and the copper chalcopyrites. The current status of Working Group activities and progress is summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rifkin, J. The Hydrogen Economy: The Creation of The Worldwide Energy Web and The Redistribution of Power On Earth. JP Tarcher/Putnam: New York, 2002.Google Scholar
2 Fujishima, A, Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972; 238: 3738.Google Scholar
3 Rocheleau, R, Miller, E. Photoelectrochemical Production of Hydrogen: Engineering Loss Analysis. International Journal Hydrogen Energy 1997; 22: 771782.Google Scholar
4US Department of Energy Efficiency and Renewable Energy. Hydrogen, Fuel Cells and Infrastructure Technologies Program – Multi-Year Research, Development and Demonstration Plan; 2007. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/Google Scholar
5 Khaselev, O., Turner, J.A., Science 280: 425427 (1998)Google Scholar
6 Khaselev, O., Bansal, A., Turner, J.A., Int. J. Hydrogen Energy 26 127132 (2001).Google Scholar
7 Graetzel, M. Photoelectrochemical cells. Nature 2001; 414: 338344.Google Scholar
8 EL, Miller, Marsen, B, Cole, B, Lum, M. Low-Temperature Reactively Sputtered Tungsten Oxide Films for Solar-Powered Water Splitting Applications. Electrochemical and Solid-State Letters 2006; 9(7): G248–G250.Google Scholar
9“Standardized Testing Procedures for the Evaluation of Photoelectrochemical Materials and Systems”, Document under preparation for publication, (2009).Google Scholar
10Techno-Economics Analysis of Photoelectrochemical systems for Solar Hydrogen Production”. DTI presentation, to be presented at the 2009 DOE Hydrogen Program AMR, Arlington VA (2009).Google Scholar
11 Weinhardt, L., Blum, M., Bar, M., Heske, C., Cole, B., Marsen, B., and Miller, E. L., “Electronic Surface Level Positions of WO3 Thin Films for Photoelectrochemical Hydrogen Production”, J. Phys. Chem. C, 112, 30783082 (2008).Google Scholar
12 Huda, M. N., Yanfa, Y., Moon, C.-Y., Wei, S.-H., and Al-Jassim, M. M. “Density-functional theory study of the effects of atomic impurity on the band edges of monoclinic WO3” Physical Review B 77, 195102 (2008).Google Scholar
13 Yan, Y. and Wei, S.-H., “Doping asymmetry in wide-bandgap semiconductors: Origins and solutions”, Phys. Stat. Sol. B 245, 641 (2008).Google Scholar
14 Jaramillo, T. F., Baeck, S-H., Kleiman-Shwarsctein, A., Choi, K-S, Stucky, G. D. and McFarland, E. W., J. Comb. Chem, 7, 264271 (2005).Google Scholar
15 Woodhous, M., Herman, G. and Parkinson, B. A., Chem. Mater. 17, 4318 (2005).Google Scholar
16 Marsen, B., Cole, B., Miller, E. L., “Progress in sputtered tungsten trioxide for photoelectrode applications”, International Journal of Hydrogen Energy 32, 31103115 (2007).Google Scholar
17 Alexander, B. D., Kulesza, P. J., Rutkowska, I., Solarskac, R. and Augustynski, J., “Metal oxide photoanodes for solar hydrogenproduction”, J. Mater. Chem. 18, 22982303 (2008).Google Scholar
18 Cole, B., Marsen, B., Miller, E. L., Yan, Y., To, B., Jones, K., and Al-Jassim, M. M., “Evaluation of Nitrogen Doping of Tungsten Oxide for Photoelectrochemical Water Splitting”, J. Phys. Chem. C 112, 52135220 (2008).Google Scholar
19 Miller, E. L., Paluselli, D., Marsen, B., Rocheleau, R. E., “Low-temperature reactively sputtered iron oxide for thin film devices”, Thin Solid Films 466, 307313 (2004).Google Scholar
20 Duret, A. and Graetzel, M., “Visible Light-Induced Water Oxidation on Mesoscopic a-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis”, Journal of Physical Chemistry B, 109(36), 1718417191 (2005).Google Scholar
21 Hu, Y.-S., Kleiman-Shwarsctein, A., Forman., A. J., Hazen, D., Park, J.-N., and McFarland, E. W., “Pt-Doped á-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting”, Chem. Mater. 20 (12), 38033805 (2008).Google Scholar
22 Kleiman-Shwarsctein, A., Hu, Y.-S., Forman, A. J., Stucky, G. D., and McFarland, E. W., “Electrodeposition of á-Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting”, J. Phys. Chem. C 112 (40), 1590015907 (2008).Google Scholar
23 Kay, A., Cesar, I. and Graetzel, M., “New Benchmark for Water Photooxidation by Nanostructured á-Fe2O3 Films”, J. Am. Chem. Soc. 128, 1571415721 (2006).Google Scholar
24 Hu, J., Zhu, F., Matulionis, I., Kunrath, A., Deutch, T., Kuritzky, L., Miller, E., and Madan, A., “Solar-to-Hydrogen Photovoltaic/Photoelectrochemical Devices Using Amorphous Silicon Carbide as the Photoelectrode”, 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1-5 September, 2008.Google Scholar
25 Matulionis, I., Zhu, F., Hu, J., Gallon, J., Kunrath, A., Miller, E., Marsen, B., and Madan, A., “Development of a Corrosion-Resistant Amorphous Silicon Carbide Photoelectrode for Solarto-Hydrogen Photovoltaic/Photoelectrochemical Devices”, SPIE Solar Energy and Hydrogen 2008, San Diego, USA, 10-14 August 2008.Google Scholar
26 Zhu, F., Hu, J., Kunrath, A., Matulionis, I., Marsen, B., Cole, B., Miller, E., and Madan, A., “a-SiC:H Films used as Photoelectrodes in a Hybrid, Thin-film Silicon Photoelectrochemical (PEC) Cell for Progress Toward 10% Solar-to Hydrogen Efficiency”, SPIE Solar Hydrogen and Nanotechnology 2007, San Diego, USA, 26-30 August 2007.Google Scholar
27 Stavrides, A., Kunrath, A., Hu, J., Treglio, R., Feldman, A., Marsen, B., Cole, B., Miller, E., and Madan, A., “Use of amorphous silicon tandem junction solar cells for hydrogen production in a photoelectrochemical cell”, SPIE Optics & Photons 2006, San Diego, USA, 13–17 August 2006.Google Scholar
28 Yae, S., Kobayashi, T., Abe, M., Nasu, N., Fukumuro, N., Ogawa, S., Yoshida, N., Nonomura, S., Nakato, Y., and Matsuda, H.Solar to chemical conversion using metal nanoparticle modified microcrystalline silicon thin film photoelectrode”, Solar Energy Materials and Solar Cells 91, 224229 (2007).Google Scholar
29 Sebastian, P.J., Mathews, N.R., Mathew, X., Pattabi, M., and Turner, J., “Photoelectrochemical characterization of SiC”, International Journal of Hydrogen Energy 26 123125 (2001).Google Scholar
30 Repins, I., Contreras, M. A., Egaas, B., DeHart, C., Scharf, J., Perkins, C. L., To, B., Noufi, R., “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor”, Progress in Photovoltaics: Research and Applications 16, 235 (2008).Google Scholar
31 Bär, M., Weinhardt, L., Pookpanratana, S., Heske, C., Nishiwaki, S., Shafarman, W., Fuchs, O., Blum, M., Yang, W., and Denlinger, J.D., “Depth-dependent band gap energies in Cu(In,Ga)(S,Se)2 thin films”, Appl. Phys. Lett. 93, 244103 (2008).Google Scholar
32 Bär, M., Bohne, W., Röhrich, J., Strub, E., Lindner, S., Lux-Steiner, M.C., and Fischer, Ch.-H., “Determination of the band gap depth profile of the penternary Cu(In(1-X)GaX)(SYSe(1-Y))2 chalcopyrite from its composition gradient”, Appl. Phys. 96, 3857 (2004).Google Scholar
33 Bär, M., Weinhardt, L., Heske, C., Nishiwaki, S., and Shafarman, W., “Chemical structures of the Cu(In,Ga)Se2/Mo and Cu(In,Ga)(S,Se)2/Mo interfaces”, Phys. Rev. B 78, 075404 (2008).Google Scholar
34 Marsen, B., Cole, B., Miller, E. L., “Photoelectrolysis of water using thin copper gallium diselenide electrodes”, Solar Energy Materials & Solar Cells 92, 10541058 (2008).Google Scholar
35 Jaramillo, T. F., Jørgensen, K. P., Bonde, J., Nielsen, J. H., Horch, S., and Chorkendorff, I., “Identifying the active site: Atomic-scale imaging and ambient reactivity of MoS2 nanocatalysts”, Science 317, 100102 (2007).Google Scholar
36 Crisp, D., Pathareb, A. and Ewell, R. C. (2004). “The performance of gallium arsenide/germanium solar cells at the Martian surface”. Progress in Photovoltaics Research and Applications 54 (2): 83101 (2004).Google Scholar
37 Deutsch, T. G., Koval, C. A., and Turner, J. A., “III-V Nitride Epilayers for Photoelectrochemical Water Splitting: GaPN and GaAsPN”, J. Phys. Chem. B 110, 2529725307 (2006).Google Scholar