Article contents
Uranium-Series Ages of Secondary Uranium Minerals with Applications to the Long-Term Evolution of Spent Nuclear Fuel
Published online by Cambridge University Press: 15 February 2011
Abstract
Uranium-series activity ratios for U(VI) minerals from the Shinkolobwe mine in southern Zaire indicate that these minerals have not experienced significant preferential loss of uranium since their formation more than 100,000 years ago. The minerals examined include rutherfordine, UO2CO3, schoepite, [(UO2)8O2(OH)12]·12H2O, becquerelite, Ca[(UO2)6O4(OH)6]·8H2O, and uranophane, Ca[(UO2)2(SiO3OH)2]·5H2O. No correlation between mineral species and mineral age was evident. The oxidative dissolution of primary uraninite (UO2+x) has maintained ground waters supersaturated with respect to all of the secondary U(VI) minerals, providing an inexhaustible source of dissolved U6+ for mineral formation and growth. As long as uraninite persists in an oxidizing environment, the assemblage of secondary U(VI) phases is determined by local ground water chemistry (including transitory changes), but not necessarily a unidirectional reaction path towards equilibrium with U(VI) minerals of lower solubility. Thus the Shinkolobwe mine displays a complex assemblage of U(VI) minerals that reflects variations in the availability of dissolved elements besides U. Similarly, for a geologic repository exposed to oxidizing waters, the assemblage of corrosion products that will form during the corrosion of spent UO2 fuel is likely to be as complex as mineral assemblages found in natural uranium deposits under similar conditions.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
- 10
- Cited by