Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:20:45.320Z Has data issue: false hasContentIssue false

Unsteady Heat Conduction in Granular Materials

Published online by Cambridge University Press:  01 February 2011

Watson L. Vargas
Affiliation:
Department of Chemical and Petroleum Engineering, University of Pittsburgh Pittsburgh, PA 15261, U.S.A.
Joseph J. McCarthy
Affiliation:
Department of Chemical and Petroleum Engineering, University of Pittsburgh Pittsburgh, PA 15261, U.S.A.
Get access

Abstract

Heat transfer in granular materials impacts a variety of industrial applications, such as calcination, drying kilns, packed bed and multiphase reactors, etc. and may yield insight into the thermal response of some porous materials (in combustion synthesis or sintering, for example). In a dense bed of granular material, conduction occurs almost exclusively through the particle-particle contacts over a wide range of conditions. We have developed a novel Thermal Particle Dynamics (TPD) Simulation technique which incorporates both contact mechanics and contact conductance theories in order to model the dynamics of flow and heat conduction through granular materials. This model is uniquely suited to studying the effects of microstructure and flow on the dynamics of heat conduction in particulate materials. In this paper, we present experimental as well as numerical results of transient heat conduction through a bed of cylinders.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bridgwater, J., Powder Technol 15, 215—231 (1976).Google Scholar
2. Jaeger, H. M., Nagel, S. R., and Behringer, R. P., Rev. Mod. Phys, 68, 1259—1273 (1996).Google Scholar
3. de Gennes, P. G., Rev. Mod. Phys., 71, S374--S382 (1999).Google Scholar
4. Patton, J. S., Sabersky, R. H., and Brennen, C. E., Int. J. Heat Mass Transfer, 29, 1263— 1269 (1986).Google Scholar
5. Sullivan, W. N. and Sabersky, R. H., Int. J. Heat Mass Transfer, 18, 97—107 (1975).Google Scholar
6. Hunt, M. L., Int. J. Heat Mass Transfer, 40, 3059—3068 (1997).Google Scholar
7. Wassgren, C. R., Beasley, D. E., and DeWachter, R. N., 1998 International Mechanical Engineering Congress and Exposition (IMECE) Conference Proceedings, (1998).Google Scholar
8. Massoudi, M. and Phuoc, T. X., Int. J. Non-Lin. Mech., 34, 347—359 (1999).Google Scholar
9. Gudhe, R., Rajagopal, K. R., and Massoudi, M., Acta Mech., 103, 63—78 (1994).Google Scholar
10. Cundall, P. A. and Strack, O. D. L., Geotechnique, 29, 47—65 (1979).Google Scholar
11. Walton, O., Int. J. Engng. Sci., 22, 1097--1107, (1984).Google Scholar
12. McCarthy, J. J. and Ottino, J. M., Powder Technol, 97, 91—99 (1998).Google Scholar
13. McCarthy, J. J., Khakhar, D. V., and Ottino, J. M., Powder Technol, 109, 72—82 (2000).Google Scholar
14. Wassgren, C. R., Brennen, C. E., and Hunt, M. L., J. Appl. Mech., 63, 712—719 (1996).Google Scholar
15. Yovanovich, M. M., J. Spacecraft Rockets, 4, 119—125 (1967).Google Scholar
16. Batchelor, G. K. and O'Brien, R. W., Phys. Rev. Lett., 355, 313333 (1977).Google Scholar
17. Chan, C. K. and Tien, C. L.,, J. of Heat Transfer, 42, 302—308 1973).Google Scholar
18. Lee, Y. M., Haji-Sheikh, A., Fletcher, L. S. and Peterson, G. P., J. of Heat Transfer, 116, 17—27 (1994).Google Scholar
19. Holm, R., Electrical Contacts: Theory and Application, (Springer-Verlag, 1967).Google Scholar
20. Johnson, K. L., Contact Mechanics, (Cambridge University Press, 1987).Google Scholar
21. Thornton, C. and Randall, C. W., in Micromechanics of Granular Materials, ed. Satake, M. and Jenkins, J. T., 75—89 (Elsevier Science Publishers, 1988).Google Scholar
22. Dabiri, D. and Gharib, M., Exper. Fluids, 11, 77—86 (1991).Google Scholar
23. Thornton, C. and Barnes, D. J., Acta Mech., 64, 45—61 (1986).Google Scholar