Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:56:22.656Z Has data issue: false hasContentIssue false

Unstable Etching Of Si(110)with Potassium Hydroxide

Published online by Cambridge University Press:  17 March 2011

Z. Moktadir
Affiliation:
Department of Microsystem Engineering, Nagoya University, Nagoya, Japan e-mail: [email protected]: +81 52 789 5289, Fax: +81 52 789 5032
K. Sato
Affiliation:
Department of Microsystem Engineering, Nagoya University, Nagoya, Japan e-mail: [email protected]: +81 52 789 5289, Fax: +81 52 789 5032
T. Shimizu
Affiliation:
Department of Microsystem Engineering, Nagoya University, Nagoya, Japan e-mail: [email protected]: +81 52 789 5289, Fax: +81 52 789 5032
M. Shikida
Affiliation:
Department of Microsystem Engineering, Nagoya University, Nagoya, Japan e-mail: [email protected]: +81 52 789 5289, Fax: +81 52 789 5032
Get access

Abstract

We present the experimental data for the morphological evolution of Si(110) etched with Potassium Hydroxide. The observed results are interpreted using a continuum equation. The results reveal the presence of unstable etching, which leads to the formation of a columnar structure on the surface. The early stage of the formation of this columnar structure can be explained by a linear theory. This instability is caused by anisotropic surface tension.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Elwenspoek, M. and Jansen, H. V., Silicon Micromachining, (Cambridge Univ. Press, 1999)Google Scholar
[2] Petersen, K., Proc. IEEE 70, 420 (1982).Google Scholar
[3] Sato, K., Shikida, M., Yamashiro, T., Asaumi, K., Iriye, Y., Yamamoto, M., Sensors and Actuators, 73 (1999) 131137.Google Scholar
[4] Sato, K., Shikida, M., Yamashiro, T., Tsunekawa, M., and Ito, S., Sensors and Actuators 73, 122130 (1999).Google Scholar
[5] Elwenspoek, M., J. Electrochem. Soc. 140, 2075, (1993)Google Scholar
[6] Moktadir, Z. and Camon, H., Modelling Simul. Mater. Sci. Eng. 5, 481488, (1997)Google Scholar
[7] Moktadir, Z., and Sato, K., SubmittedGoogle Scholar
[8] Mullins, W.W., J. Appl. Phys. 30, 77 (1959).Google Scholar
[9] Lui, F. and Metiu, H., Phys. Rev. B 48, 5808 (1993).Google Scholar
[10] Golovin, A.A., Davis, S. H., and Nepomnyashchy, A. A., Physica D 122, 202 (1998).Google Scholar
[11] Sekerka, R. F., J. Cryst. Growth 128, 1 (1993).Google Scholar
[12] Nozieres, P., Solids far from equilibrium, (Cambridge University Press, London, (1992), p.1154.Google Scholar
[13] Chernov, A. A., J. Cryst. Growth 24/25, 11 (1974).Google Scholar
[14] Golovin, A. A., Davis, S. H., and Nepomnyashchy, A. A., Phys. Rev. E 59, 803 (1999).Google Scholar
[15] Cotta, M. A., Hamm, R. A., Staley, T. W., Chu, S. N. G., Harriot, L. R., Panish, M. B., and Temkin, H., Phys. Rev. Lett. 70, 4106 (1993).Google Scholar
[16] Gyure, M. F., Zinck, J. J., Ratsch, C., and Vvedensky, D. D., Phys. Rev. Lett. 81, 4931 (1998).Google Scholar
[17] Villain, J., J. Phys. (France) I 1, 19 (1991).Google Scholar
[18] Amar, J. G. and Family, F., Phys. Rev. Lett. 77, 4584 (1996).Google Scholar
[19] Eklund, E. A., Bruinsma, R., Rudnick, J., and Williams, R. S., Phys. Rev. Lett. 67, 1759 (1991).Google Scholar
[20] Park, S., Kahng, B., Jeong, H., and Barabasi, A.-L., Phys. Rev. Lett. 83, 3486 (1999).Google Scholar
[21] Stewart, J. and Goldenfeld, N., Phys. Rev. A 46, 6505 (1992).Google Scholar
[22] Mayer, T. M., J. Appl. Phys. 76, 1633 (1994).Google Scholar
[23] Carter, G. and Vishnyakov, V., Phys. Rev. B 54, 17647 (1996).Google Scholar
[24] Zhao, Y.-P., Wang, G.-C., and Lu, T.-M., Phys. Rev. B 58, 13909 (1998).Google Scholar
[25] Hunt, A. W., Orme, C., Williams, D. R. M., Orr, B. G., and Sander, L. M., Europhys. Lett. 27, 611 (1994).Google Scholar