Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T03:07:44.472Z Has data issue: false hasContentIssue false

Unraveling the Structure of Decagonal Approximants by “Brute Force” Deconvolution of the Experimental Autocorrelation Function

Published online by Cambridge University Press:  17 March 2011

Michael A. Estermann
Affiliation:
Laboratory of Crystallography, Swiss Federal Institute of Technology Zurich ETH, CH-8092 Zurich, Switzerland
Katja Lemster
Affiliation:
Laboratory of Crystallography, Swiss Federal Institute of Technology Zurich ETH, CH-8092 Zurich, Switzerland
Walter Steurer
Affiliation:
Laboratory of Crystallography, Swiss Federal Institute of Technology Zurich ETH, CH-8092 Zurich, Switzerland
Get access

Abstract

Methods for the ab initio structure analysis of periodic approximant phases from single- crystal X-ray diffraction data are presented. These methods are particularly suited to complex approximant structures with large unit cells and strong pseudosymmetry (where routine X-ray structure solution tools fail) and are based on the “brute-force” deconvolution of the experimentally measured autocorrelation function. This function is obtained directly by a simple Fourier transform of the measured X-ray diffraction intensities. Sub-optimal diffraction data from twinned, nanodomain and polycrystalline specimens can be processed despite the inevitable lack of information due to reflection overlap and limited resolution. The deconvolution process allows complex approximant structures to be unraveled without prior knowledge about the structure-building motifs. Examples are presented for the systems Al-Co-Ni and Al-Co-(Ta).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Widom, M., AlLehyani, I., and Moriarty, J. A., Phys. Rev. B 62(6), 3648 (2000).Google Scholar
2.Estermann, M. A., Lemster, K., Haibach, T., and Steurer, W., Z. Kristallogr. 215, 584 (2000).Google Scholar
3.Schenk, H. E., Direct Methods of Solving Crystal Structures. Proc. of a NATO Advanced Study Institute, April 18-29, 1990, in Erice, Italy (Plenum Press, New York, 1991).Google Scholar
4.Robinson, K., Acta Crystallogr. 7, 494. (1954).Google Scholar
5.Patterson, A. L., Phys. Rev. 46, 372 (1934).Google Scholar
6.Patterson, A. L., Z. Kristallogr. 90, 517 (1935).Google Scholar
7.Karle, J. and Hauptman, H., Acta Crystallogr. 17, 392 (1964).Google Scholar
8.David, W. I. F., Nature 346(6286), 731 (1990).Google Scholar
9.Wrinch, D. M., Philos. Mag. 27, 98 (1939).Google Scholar
10.Buerger, M. J., Vector Space (John Wiley & Sons, Inc., New York, 1959).Google Scholar
11.Estermann, M. A., Nucl. Instrum. Methods Phys. Res., Sect. A 354(1), 126 (1995).Google Scholar
12.Estermann, M. A., Program SHAPE. In: Xtal3.7 System of Crystallographic Programs (Eds. Hall, S.R., Boulay, D.J. du & Olthof-Hazekamp, R., Univ. of Western Australia, 2000).Google Scholar
13.Kraut, J., Acta Crystallogr. 14, 1146 (1961).Google Scholar
14.Simpson, P. G., Dobrott, R. D., and Lipscomb, W. N., Acta Crystallogr. 18, 169 (1965).Google Scholar
15.Bricogne, G., Molecular Replacement. Proceedings of the CCP4 Study Weekend, Pp. 62-75 (Eds. Dodson, E. J., Gover, S., and Wolf, W., Daresbury Laboratory Publications, 1992).Google Scholar
16.Grushko, B., HollandMoritz, D., Wittmann, R., and Wilde, G., J. Alloys Compd. 280(1-2), 215 (1998).Google Scholar
17.Doeblinger, M., Wittmann, R., Gerthsen, D., and Grushko, B., Submitted As Proceedings for the ICQ7 Conference in Stuttgart (2000).Google Scholar
18.Yan, Y., Pennycook, S. J., and Tsai, A. P., Phys. Rev. Lett. 81(23), 5145 (1998).Google Scholar