Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:52:39.044Z Has data issue: false hasContentIssue false

unneling effects in InAs/GaInSb superlattice infrared photodiodes

Published online by Cambridge University Press:  10 February 2011

U. Weimar
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
F. Fuchs
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
E. Ahlswede
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
J. Schmitz
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
W. Pletschen
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
N. Herres
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
M. Walther
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany
Get access

Abstract

The optical and electrical properties of InAs/GaInSb superlattice mesa photodiodes with a cutoff wavelength around 8 pim are investigated. The influence of the surface potential at the mesa sidewalls on the device properties was studied by fabricating gate-controlled diodes. At least two mechanisms determining the dark current in the reverse bias region can be identified. At high reverse biases bulk bandto- band tunneling dominates while the current at low reverse biases is most likely governed by surface effects. Bulk interband tunneling is further investigated by applying magnetic fields B up to 7 T parallel and perpendicular to the electric field E across the p-n junction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, D. L. and Mailhoit, C., J. Appl. Phys. 62(6), 2545 (1987).Google Scholar
2. Chow, D. H., Miles, R. H., and Nieh, C. W., J. Cryst. Growth 111, 883 (1991).Google Scholar
3. Johnson, J. L., Samoska, L. A., Gossard, A. C., Merz, J. L., Jack, M. D., Chapman, G. R., Baumgratz, B. A., Kosai, K., and Johnson, S. M., J. Appl. Phys. 80(2), 1116 (1996).Google Scholar
4. Fuchs, F., Pletschen, W., Weimar, U., Schmitz, J., Walther, M., Wagner, J., and Koidl, P., Proc. 8 th Int. Conf. On Narrow Gap Semiconductors, Shanghai (1997), in press.Google Scholar
5. Reine, M. B., Sood, A. K., and Tredwell, T. J., vol.18 of Semiconductors and Semimetals, pp. 201311, Academic Press, 1981.Google Scholar
6. Adar, R., Nemirovsky, Y., and Kidron, I., Solid-State Electron. 30(12), 1289 (1987).Google Scholar
7. Tuttle, G., Kroemer, H., and English, J. H., J. Appl. Phys. 65(12), 5239 (1989).Google Scholar
8. Wagner, J., Fuchs, J., Schmitz, J., Pletschen, W., Weimar, U., Herres, N., Walther, M., and Koidl, P., Electrochem. Soc. Proc. 97(21), 171 (1997).Google Scholar
9. Fuchs, F., Weimar, U., Pletschen, W., Schmitz, J., Ahlswede, E., Walther, M., Wagner, J., and Koidl, P., Appl. Phys. Lett. 71(2), 3251 (1997).Google Scholar
10. Sze, S. M., Physics of Semiconductor Devices, pp. 9798, John Wiley & Sons, 1981.Google Scholar
11. Kane, E. O., J. Phys. Chem. Solids 12, 181 (1959).Google Scholar
12. Fuchs, F., Ahlswede, E., Weimar, U., Pletschen, W., Schmitz, J., Hartung, M., Wixforth, A., Kotthaus, J. P., and Szmulowicz, F., to be published.Google Scholar
13. Sze, S. M., Physics of Semiconductor Devices, pp. 7477, John Wiley & Sons, 1981.Google Scholar
14. Argyres, P. N., Phys. Rev. 126(4), 1386 (1962).Google Scholar
15. Szmulowicz, F., private communication.Google Scholar
16. Zav'ialov, V. V. and Radantsev, V. F., Semicond. Sci. Technol. 9, 281 (1994).Google Scholar
17. Aronov, A. G. and Pikus, G. E., Soy. Phys. JEPT 24(1), 188 (1967).Google Scholar