Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:52:28.807Z Has data issue: false hasContentIssue false

Universality of the Spin-Glass Transition in the Cd1−xMnXTe System

Published online by Cambridge University Press:  26 February 2011

T. Datta
Affiliation:
University of South Carolina, Dept. of Physics, Columbia, SC 29208, U.S.A.
J. Amirzadeh
Affiliation:
Morris College, Sumter, SC 29150, U.S.A.
A. Barrientos
Affiliation:
University of South Carolina, Dept. of Physics, Columbia, SC 29208, U.S.A.
E. R. Jones
Affiliation:
University of South Carolina, Dept. of Physics, Columbia, SC 29208, U.S.A.
J. F. Schetzina
Affiliation:
North Carolina State University, Dept. of Physics, Raleigh, NC 27695
Get access

Abstract

Universality of the spin-glass (SG) transition in bulk Cd1−xMnxTe was investigated by determining the scaling behavior of the spin-glass order parameter q as a function of the reduced temperature t = (Tg-T)/Tg, where Tg is the transition temperature. q(T) was determined from the SQUID magnetometric data both above and below the transition. It can be shown that, q(T) = 1 + T[│θ│ − C/χ(T)]−1. C and θ, the Curie and Curie-Weiss parameters, were obtained from a non-linear regression of the dc low field susceptibility χ(T) above Tg. q(T) thus obtained exhibits the cannonical order parameter criteria, viz. q(T>Tg) = 0, q(T→Tg)= 0, and q(T→Tg)→0, and q(T→0)→1. In range of Mn concentration studied (0.3 ≦ x ≦ 0.55), Tg ranged between 13 K and 23.5 K. Thus q as a function of absolute temperature behaves differently for different x. However, universality is clearly evidenced when the dependence on t is determined. q(t) exhibits a universal scaling law. We observe q ˜ tβ with β ≅ 0.95. Overall good agreement was noted with the Sherrington-Kirkpatrick (SK) infinite range SG model. Observed value of β is in excellent agreement with the model prediction β −1. But in the Cd1−xMnxTe system we find θ<0, indicating a net antiferromagnetic interaction and │θ│/Tg > 1 as opposed to the SK model. We believe this to be additional evidence that the spin interactions are not distributed as a Gaussian function.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) For a very readable review please see: Furdyna, J.K., J. Appl. Phys. 53, 7637 (1982).CrossRefGoogle Scholar
2) Galazka, R.R., Nagata, S. and Keesom, P.H., Phys. Rev. B22 3344 (1980).CrossRefGoogle Scholar
3) Nagata, S., Galazka, R. R., Khattak, G.D., Amarasekara, C.D., Furdyna, J.K. and Keesom, P.H., Physica 107B, 311 (1981); M. Escorne, A. Manger, R. Triboulet and J.L. Tholence, Phys. Rev. 309 (1981); M.A. Novak, S. Oseroff and O.G. Symko, Phys. Rev. 313 (1981).Google Scholar
4) Oseroff, S. and Acker, F., Solid State Commun. 37, 19 (1980).CrossRefGoogle Scholar
5) Escorne, M. and Manger, A., Phys. Rev. B25, 4674 (1982).Google Scholar
6) Khattak, G. D., Twardowski, A. and Galazka, R.R., Phys. Status Solidi A87, K87 (1985).Google Scholar
7) Barrientos, A., Almasan, C., Datta, T., Jones, E.R. Jr, Bicknell, R.N. and Schetzina, J.F., Bull. Am. Phys. Soc. 31, 252 (1986).Google Scholar
8) Anderson, J.R., Gorska, M., Azevedo, L.J. and Venturini, E.L., Bull. Am. Phys. Soc. 31 253 (1986).Google Scholar
9) Datta, T., Barrientos, A., Amirzadeh, J., Jones, E.R. Jr and Schetzina, J.F., submitted for publication.Google Scholar
10) Datta, T., Levine, S.D., Thornberry, D. and Jones, E.R. Jr, Phys. Status Solidi B121, K125 (1984).Google Scholar
11) Datta, T., Thornberry, O., Jones, E.R. Jr, and Ledbetter, H.M., Solid State Commun. 52, 515 (1984).CrossRefGoogle Scholar
12) Datta, T., Thornberry, D., Almasan, C. and Jones, E.R. Jr, Solid State Commun. 56, 523 (1985).CrossRefGoogle Scholar
13) Malozemoff, A.P., Barnes, S.E., and Barbara, B., Phys. Rev. Lett. 51, 1704 (1983).Google Scholar
14) Villain, J., Z. Phys. B33, 41 (1979).Google Scholar
15) Poole, C.P. and Farach, H.A., Z. Phys. B47, 55 (1982).CrossRefGoogle Scholar
16) Model # VTS-805, BTI Corp. San Diego, CA, USA.Google Scholar
17) Fishman, S. and Aharony, A., J. Phys. C12, L729 (1979).Google Scholar
18) King, A.R., Mydosh, J.A. and Jaccarino, V., Phys. Rev. Lett. 56, 2525 (1986).CrossRefGoogle Scholar
19) Spalek, J., Lewicki, A., Tarnawski, Z., Furdyna, J.K., Galazka, R.R., Obuszko, Z., Phys. Rev. B 33, 3407 (1986).CrossRefGoogle Scholar
20) Shapira, Y., Foner, S., Becla, P., Domingues, D.N., Naughton, M.J., Brooks, J.S., Phys. Rev. B 33, 356 (1986).CrossRefGoogle Scholar
21) Fischer, K.H., Phys. Rev. Lett. 34 1438 (1975).CrossRefGoogle Scholar
22) Hertz, J.A., Phys. Rev. Lett. 52, 1880 (1983).Google Scholar
23) Sherrington, D. and Kirkpatrick, S., Phys. Rev. Lett. 35, 1792 (1975).CrossRefGoogle Scholar
24) Soultie, J. and Tournier, R. Jr Low Temp. Phys. 1, 95 (1969).CrossRefGoogle Scholar
25) Almeida, J.R.L. de, Thouless, K.J., J. Phys. A11, 983 (1978).Google Scholar
26) Campbell, I.A., Arvanitis, D., Fert, A., Phys. Rev. Lett. 51, 57 (1983).Google Scholar