Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:02:22.921Z Has data issue: false hasContentIssue false

Universal glass dynamics in PCM nano-glasses

Published online by Cambridge University Press:  01 February 2011

I. V. Karpov
Affiliation:
[email protected], Intel Corporation, 2200 Mission College Blvd, RNB 3-01, Santa Clara, CA, 95051, United States
M. Mitra
Affiliation:
[email protected], University of Toledo, Department of Physics & Astronomy, 2801 W.Bancroft Street, MS 111, Toledo, OH, 43606, United States
D. Kau
Affiliation:
[email protected], Intel Corporation, 2200 Mission College Blvd, RNB 3-01, Santa Clara, CA, 95051, United States
G. Spadini
Affiliation:
[email protected], Intel Corporation, 2200 Mission College Blvd, RNB 3-01, Santa Clara, CA, 95051, United States
V. G. Karpov
Affiliation:
[email protected], University of Toledo, Department of Physics & Astronomy, 2801 W.Bancroft Street, MS 111, Toledo, OH, 43606, United States
Y. A. Kryukov
Affiliation:
[email protected], University of Toledo, Department of Physics & Astronomy, 2801 W.Bancroft Street, MS 111, Toledo, OH, 43606, United States
Get access

Abstract

The classical double well potential (DWP) model known to explain many phenomena in glasses, is extended to the nano glasses of chalcogenide phase change memory (PCM). We describe simple analytical expressions for the temporal drift of PCM reset parameters. The threshold voltage Vth and the amorphous state resistance R are shown to drift with the time (t) as deltaVth ∝ ν propotional to ln t and R proportional to t power alpha respectively in broad intervals spanning many decades in time. These dependencies saturate at long enough times that can be shorten with temperature increase. All the available data on the PCM drift are shown to be fully consistent with DWP model.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lai, S. IEDM 2003 Technical Digest, 2003, pp. 225258.Google Scholar
2. Shin, Y.Non- volatile memory technologies for beyond 2010”, in proc. symp. VLSI circuits Tech Dig, 2005, pp. 156159.Google Scholar
3. Pirovano, A. Lacaita, A. L. Pellizzer, F. Kostylev, S. A. Benvenuti, A. and Bez, R. IEEE Trans. On Electron Devices, 51, 714 (2004). Ielmini, A. L., Lacaita, and D. Mantegazza, IEEE Trans. On Electron Devices, 54, 308 (2007).Google Scholar
4. Karpov, I. V. Mitra, M., Kau, D. Spadini, P. Kryukov, Y. A. and Karpov, V. G. J. Appl. Phys. 102, 125503 (2007).Google Scholar
4. Anderson, P. W. Halperin, B. I. and Varma, C. M. Phil. Mag., 25, 1 (1972). W. A., Phillips, J. Low Temp. Phys., 7, 351 (1972).Google Scholar
5. Karpov, V. G. and Grimsditch, M. Phys. Rev. B, 48, 6941 (1993).Google Scholar
6.See the reviews in Hunklinger, S. and Raychaudhuri, A. K. in Progress in Low Temperature Physics, Edited by Brewer, D. F. Elsevier 1986, p. 267.Google Scholar
7. Jameson, J. R. Harrison, W. Griffin, P. B. and Plummer, J. D. Appl. Phys. Lett, 84, 3489 (2004).Google Scholar
8. Sopinskyy, M. V. Shepeliavyi, P. E. Stronski, A. V. Venger, E. F. J. Optoelectronics and Advanced Materials, 7, 2255 (2005). P., Boolchand, D. G., Georgiev, M., Micoulauta ibid., 4, 823 (2002). J. M., Saiter ibid, 3, 685(2001).Google Scholar
9. El-Mansy, M. K., El-Zaidia, M. M., El-Hassan, E. Abo 1 and Ammar, A. A. II Nuovo Cimento D 17, 1121 (1995). K., Ramesh, S., Asokan, K. S., Sangunni and E. S. R. Gopal, J.Phys: Condens. Matter 11 3897 (1999). B. T., Kolomiets and E. M., Raspopova, E. M., Fizika i Tekhnika Poluprovodnikov (in Russian), 6, 1103 (1972).Google Scholar