Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T19:29:35.975Z Has data issue: false hasContentIssue false

Unimportance of Siloxene in Luminescent Porous Silicon as Determined by Nexafs & Exafs

Published online by Cambridge University Press:  25 February 2011

M.A. Marcus
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
D.L. Adler
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Y.-H. Xie
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T.D. Harris
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
P.H. Citrin
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Near-edge-- and extended--x-ray absorption fine structure measurements, as well as luminescence excitation and emission spectra, were obtained from samples of porous Si and siloxene. Contrary to a recently proposed explanation for the room temperature luminescence in porous Si, the combined data indicate that siloxene is not principally responsible for the observed effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
2. Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).CrossRefGoogle Scholar
3. Prokes, S.M., Glebocki, O.J., Bermudez, V.M., Kaplan, R., Friedersdorf, L.E., and Searson, P.C., Proc. Mater. Soc. 256, 107 (1992).CrossRefGoogle Scholar
4. Vasquez, R.P., Fathauer, R.W., George, T., Ksendzov, A., and Lin, T.L., Appl. Phys. Lett. 60, 1004 (1992).Google Scholar
5. Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J., and Cardona, M., Solid State Comm. 81, 307 (1992).Google Scholar
6. Deàk, P., Rosenbauer, M., Stutzmann, M., Weber, J., and Brandt, M.S., Phys. Rev. Lett. 69, 2531 (1991).Google Scholar
7. Aspnes, D.E. and Studna, A.A., Phys. Rev. B 27, 985 (1983). For 350nm radiation, which is near the peak of excitation efficiency for porous Si, the penetration depth in crystalline Si is <100Å. In lower density porous Si this value is between 2-5 times larger, depending on the degree of sample porosity.Google Scholar
8. Yie, Y.-H., Wilson, W.L., Ross, F.M., Mucha, J.A., Fitzgerald, E.A., Macaulay, J. M., and Harris, T.D., J. Appl. Phys. 71, 2403 (1992).Google Scholar
9. MacDowell, A.A., Hashizume, T., and Citrin, P.H., Rev. Sci. Instrum. 60, 1901 (1989).Google Scholar
10. Comin, F., tncoccia, L., Lafarde, P., Rossi, G., and Citrin, P.H., Phys. Rev. Lett. 54, 122 (1985).Google Scholar
11. Guo, T. and denBoer, M.L., Phys. Rev. B 31, 6233 (1985). Escape depths for total yield EXAFS experiments are actually smaller than those quoted in this work, because elastically scattered electrons do not effectively contribute to the coherent EXAFS signal.CrossRefGoogle Scholar
12. Wöhler, F., Lieb. Ann. 127, 275 (1863).CrossRefGoogle Scholar
13. Wurzbach, J.A., in Proceedings of the International Topical Conference on the Physics of MOS Insulators, edited by Lucovsky, G., Pantelides, S.T., Galeener, F.L. (Permagon Press, New York, 1980), p. 172.Google Scholar
14. Lee, P.A., Citrin, P.H., Eisenberger, P., Kincaid, B.M., Rev. Mod. Phys. 53, 769 (1981).Google Scholar
15. The low-R structure seen in Fig. 4 is due to incompletely subtracted background which, unlike the non-artifactual Si-O peaks in the other samples, varies in position with small changes in the analysis. Its intensity, however, remains very small, consistent with the more quantitative limits determined from the NEXAFS data.Google Scholar
16. Berlman, I.B., Handbook of Fluorescence Spectra of Aromatic Molecules, (Academic Press, New York, 1965).Google Scholar
17 For example, see Furukawa, S. and Miyasato, T., Jap. J. Appl. Phys. 27, L2207 (1988); K. Furukawa, M. Fujino, and N. Matsumato, Appl. Phys. Lett. 60, 2744 (1992).CrossRefGoogle Scholar