Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:46:45.871Z Has data issue: false hasContentIssue false

Unifying Chemical Bonding Models for Boranes

Published online by Cambridge University Press:  01 February 2011

Mao-Hua Du
Affiliation:
[email protected], Oak RIdge National Laboratory, Material Science and Technology Division, PO BOX 2008 MS6114, Oak Ridge, TN, 37831, United States, 865-576-6711
Susumu Saito
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Physics, 2-12-1 Oh-okayama, Meguro-ku, Tokyo, 152-8551, Japan
S. B. Zhang
Affiliation:
[email protected], Rensselaer Polytechnic Institute,, Department of Physics, Applied Physics, and Astronomy, Troy, NY, 12180, United States
Get access

Abstract

We demonstrate, based on first-principles calculations, that chemical bonding in deltahedral boron hydrides, BnHn2− also known as closo boranes, can be understood within the three-center two-electron (3c2e) bonding model in line with other families of boranes. We show that bonding in the triangular lattice of BnHn2− cages can be described by delocalized resonant 3c2e bonding. We also find that the reason for all the BnHn2− to be dianions can be attributed to the reduction of boron coordination number in the deltahedral cage structure from that of boron sheet with triangular lattice.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lewis, G. N., J. Am. Chem. Soc. 38, 762 (1916)Google Scholar
2 King, R. B., Chem. Rev. 101, 1119 (2001).Google Scholar
3 Jemmis, E. D., Balakrishnarajan, M. M., and Pancharatna, P. D., Chem. Rev. 102, 93 (2002).Google Scholar
4 Fox, M. A. and Wade, K., Pure Appl. Chem. 75, 1315 (2003).Google Scholar
5 Williams, R. E., Inorg. Chem. 10, 210 (1971).Google Scholar
6 Eberhardt, W. H., Crawford, B., and Lipscomb, W. N., J. Chem. Phys. 22, 989 (1954).Google Scholar
7 Lipscomb, W. N., Science 196, 1047 (1977).Google Scholar
8 O'Neill, M. E. and Wade, K, Inorg. Chem. 21, 461 (1982); M. E. O'Neill and K Wade, Polyhedron 3, 199 (1984).Google Scholar
9 Wade, K., Chem. Commun. 792 (1971).Google Scholar
10 Longuet-Higgins, H. C. and Roberts, M. de V., Proc. Roy. Soc. 230A, 110 (1955).Google Scholar
11 Hoffmann, R. and Lipscomb, W. N., J. Chem. Phys. 36, 2179 (1962).Google Scholar
12 Lipscomb, W. N., Boron Hydride, Benjamin, W. A.: New York, 1963.Google Scholar
13 King, R. B. and Rouvray, D. H., J. Am. Chem. Soc. 99, 7834 (1977).10.1021/ja00466a014Google Scholar
14 Wade, K., Adv. Inorg. Chem. Radiochem. 18, 1 (1976).Google Scholar
15 Gillespie, R. D., Porterfield, W. W., and Wade, K., Polyhedron 6, 2129 (1987)Google Scholar
16 Stone, A. J., Inorg. Chem. 20, 563 (1981).10.1021/ic50216a049Google Scholar
17 Stone, A. J. and Alderton, M. J., Inorg. Chem. 21, 2297 (1982)10.1021/ic00136a034Google Scholar
18 Fowler, P. W. and Porterfield, W. W., Inorg. Chem. 24, 3511 (1985).10.1021/ic00216a008Google Scholar
19 Kettle, S. F. A., Tomlinson, V., J. Chem. Soc. A 2002 (1969); S. F. A. Kettle, V. Tomlinson, J. Chem. Soc. A 2007 (1969)Google Scholar
20 Fujimori, M., Nakata, T., Nakayama, T., Nishibori, E., Kimura, K., Takata, M., and Sakata, M., Phys. Rev. Lett. 82, 4452 (1999).Google Scholar
21 King, R. B., Heine, T., Corminboeuf, C., and Schleyer, P. v. R., J. Am. Chem. Soc. 126, 430 (2004).Google Scholar
22 Yamauchi, J., Aoki, N., and Mizushima, I., Phys. Rev. B 55, R10245 (1997).Google Scholar
23 Balakrishnarajan, M. M., Hoffmann, R., Pancharatna, P. D., and Jemmis, E. D., Inorg. Chem. 42, 4650 (2003).Google Scholar
24 Quong, A. A., Pederson, M. R., and Broughton, J. Q., Phys. Rev. B 50, 4787 (1994).Google Scholar
25 Evans, M. H., Joannopoulos, J. D., and Pantelides, S. T., Phys. Rev. B 72, 045434 (2005).10.1103/PhysRevB.72.045434Google Scholar