Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T16:40:13.906Z Has data issue: false hasContentIssue false

A Unified Treatment of The Thermal Donor Hierarchies in Silicon and Germanium*

Published online by Cambridge University Press:  28 February 2011

Jeffrey T. Borenstein
Affiliation:
Physics Department, SUNY/Albany, Albany NY 12222, USA.
James W. Corbett
Affiliation:
Physics Department, SUNY/Albany, Albany NY 12222, USA.
Get access

Abstract

The hierarchies of thermal donor binding energies produced by annealing oxygen-containing silicon or germanium at ca. 450°C are explained by using a generalized perturbation model which involves a standard repulsion parameter for the interaction between agglomerating oxygen atoms and the shallow donor electrons. This model is capable of fitting the ground state ladders for both charge states of the thermal donors in both Si and Ge, since differences between the two ladders can–ee explained entirely by the change in the electron-effective-mass and dielectric constant of the host.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Supported in part by the JPL-DOE Flat-Plate Solar Array Program, the U.S.A.R.O., and the Mobil Foundation.

References

REFERENCES

* Supported in part by the JPL-DOE Flat-Plate Solar Array Program, the U.S.A.R.O., and the Mobil Foundation.Google Scholar
1. Gaworzewski, P. and Schmalz, K., Phys. Stat. Sol. 55A (1979) 699.Google Scholar
2. Oeder, R. and Wagner, P., Defects in Semiconductors II, eds. Mahajan, S. and Corbett, J.W. (North-Holland: New York, 1983) p. 171.Google Scholar
3. Pajot, B., Compain, H., Lerouille, J. and Clerjaud, B., Physica 117B and 118B (1983) 110.Google Scholar
4. Suezawa, M. and Sumino, K., Mater. Letters 2 (1983) 85.Google Scholar
5. Clauws, P., Simoen, E. and Vennik, J., in Thirteenth International Conference on Defects in Semiconductors, eds. Kimerling, L.C. and Parsey, J.M. Jr. (Metallurgical Society of AIME: Coronado, Calif., 1984) p. 911.Google Scholar
6. Clauws, P. and Vennik, J., Phys. Rev. B 30 (1984) 4837.Google Scholar
7. Ourmazd, A., Schröter, W. and Bourret, A., J. Appl. Phys. 56 (1984) 1670.CrossRefGoogle Scholar
8. Borenstein, J.T., Peak, D. and Corbett, J.W., this volume.Google Scholar
9. Fuller, C.S., Kaiser, W. and Thurmond, C.D., J. Phys. Chem. Solids 17 (1961) 301.Google Scholar
10. Corbett, J.W., Frisch, H.L. and Snyder, L.C., Mater. Letters 2 (1984) 209.CrossRefGoogle Scholar
11. Borenstein, J.T., Corbett, J.W., Herder, M., Sahu, S.N. and Snyder, L.C., J. Phys. C, in press.Google Scholar
12. Glodeanu, A., Phys. Stat. Sol. 19 (1967) K43.Google Scholar
13. Kohn, W. and Luttinger, J.M., Phys. Rev. 98 (1955) 915.Google Scholar
14. Faulkner, R.A., Phys. Rev. 184 (1969) 713.Google Scholar
15. Stavola, M., Lee, K.M., Nabity, J.C., Freeland, P.E. and Kimerling, L.C., Phys. Rev. Lett. 54 (1985) 2639.Google Scholar
16. Bethe, H.A. and Salpeter, E.E., Quan-tum Mechanics of One-and Two- Electron Atoms (Berlin: Springer Verlag, 1957).CrossRefGoogle Scholar
17. Tyler, W.W., J. Phys. Chem. Solids 8 (1959) 59.Google Scholar