No CrossRef data available.
Published online by Cambridge University Press: 01 June 2015
The continuous trend of achieving more complex microelectronics with smaller nodes yet larger wafer sizes in microelectronics manufacturing lead to aggressive development requirements for chemical mechanical planarization (CMP) process. Particularly, beyond the 14 nm technology the development needs made it a must to introduce high mobility channel materials such as Ge. CMP is an enabler for integration of these new materials into future devices. In this study, we implemented a design of experiment (DOE) methodology in order to understand the optimized CMP slurry parameters such as optimal concentration of surface active agent (sodium dodecyl sulfate-SDS), concentration of abrasive particles and pH from the viewpoint of high removal rate and selectivity while maintaining a defect free surface finish. The responses examined were particle size distribution (slurry stability), zeta potential, material removal rate (MRR) and the surface defectivity as a function of the selected design variables. The impact of fumed silica particle loadings, oxidizer (H2O2) concentration, SDS surfactant concentration and pH were analyzed on Ge/silica selectivity through material removal rate (MRR) surface roughness and defectivity analyses.