Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T03:37:31.190Z Has data issue: false hasContentIssue false

Understanding Phase Change Memory Reliability and Scaling by Physical Models of the Amorphous Chalcogenide Phase

Published online by Cambridge University Press:  01 February 2011

Daniele Ielmini*
Affiliation:
[email protected], Politecnico di Milano, Dipartimento di Elettronica e Informazione, MI, Italy
Get access

Abstract

Phase change memory (PCM) devices are based on the electrically-induced change of phase within an active chalcogenide material. PCM features large resistance window, fast threshold/phase switching and high endurance, thus motivating a broad interest as potential Flash replacement and/or nonvolatile storage class memory. Despite the relatively mature progress of research and technology, there is still a wide debate about the ultimate scaling perspective for PCMs. Structural relaxation, crystallization and noise affecting the amorphous chalcogenide phase need to be addressed by accurate physical models for a realistic scaling projection. This work discusses the scaling of PCM devices in terms of the conduction mechanisms and structural stability of the amorphous chalcogenide phase. Resistance window narrowing, current fluctuations, resistance drift and crystallization in the amorphous phase will be explained by a unified model for thermal excitation of the structure by many-phonon phenomena. The downscaling of the reset current, needed to reduce the cell area in memory arrays, and thermal disturb between adjacent cells during reset will be finally addressed to assess the scaling capability of high-density PCM crossbar architectures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wuttig, M. and Yamada, N. Nature Mater. 6, 824 (2007).Google Scholar
2 Freitas, R. F. and Wilcke, W. W. IBM J. Research Development 32, 439 (2008).Google Scholar
3 Servalli, G. IEDM Tech. Dig. 113 (2009)Google Scholar
4 Sasago, Y. Kinoshita, M. Morikawa, T. Kurotsuchi, K. Hanzawa, S. Mine, T. Shima, A. Fujisaki, Y., Kume, H. Moriya, H. Takaura, N. and Torii, K. Symp. VLSI Tech. Dig. 24 (2009).Google Scholar
5 Kau, D. Tang, S. Karpov, I. V. Dodge, R. Klehn, B. Kalb, J. A. Strand, J. Diaz, A. Leung, N. Wu, J. Lee, S. Langtry, T. Chang, K.-W. Papagianni, C. Lee, J. Hirst, J. Erra, S. Flores, E. Righos, N., Castro, H. and Spadini, G. IEDM Tech. Dig. 617 (2009)Google Scholar
6 Pellizzer, F. and Bez, R. E/PCOS (2007).Google Scholar
7 Russo, U. Ielmini, D. and Lacaita, A. L. IEEE Trans. Electron Devices 54, 2769 (2007).Google Scholar
8 Ielmini, D. “Phase change memory device modeling,” in Phase Change Materials – Science and Applications, Springer, Raoux, S. and Wuttig, M. Eds., 299 (2009).Google Scholar
9 Russo, U. Ielmini, D. Redaelli, A. and Lacaita, A. L. IEEE Trans. Electron Devices 55, 506 (2008).Google Scholar
10 Fugazza, D. Ielmini, D. Lavizzari, S. and Lacaita, A. L. IEDM Tech. Dig. 723–726 (2009).Google Scholar
11 Ielmini, D. Phys. Rev. B 78, 035308 (2008).Google Scholar
12 Ielmini, D. and Zhang, Y. J. Appl. Phys. 102, 054517 (2007).Google Scholar
13 Fugazza, D. Ielmini, D. Lavizzari, S. and Lacaita, A. L. IEEE IRPS (2010).Google Scholar
14 Beneventi, G. Betti, Calderoni, A. Fantini, P. Larcher, L. and Pavan, P. J. Appl. Phys. 106, 054506 (2009).Google Scholar
15 Ielmini, D. Sharma, D. Lavizzari, S. and Lacaita, A. L. IEEE Trans. Electron Devices 56, 1070 (2009).Google Scholar
16 Ielmini, D. Lavizzari, S. Sharma, D. and Lacaita, A. L. Appl. Phys. Lett. 92, 193511 (2008).Google Scholar
17 Ielmini, D. and Boniardi, M. Appl. Phys. Lett. 94, 091906 (2009).Google Scholar
18 Meyer, W. and Neldel, H. Z. Tech. Phys. (Leipzig) 12, 588 (1937).Google Scholar
19 Yelon, A. Movaghar, B. and Branz, H. M. Phys. Rev. B 46, 12244 (1992).Google Scholar
20 Savranski, S. and Karpov, I.V. Mater. Res. Soc. Symp. Proc. 1072 (2008).Google Scholar
21 Calderoni, A. Ferro, M. Ventrice, D. Ielmini, D. and Fantini, P. IEEE IRPS, (2010).Google Scholar
22 Crandall, R. S. Phys. Rev. B 43, 4057 (1991).Google Scholar
23 Lai, S. and Lowrey, T. IEDM Tech. Dig. 803 (2001).Google Scholar
24 Pellizzer, F. Benvenuti, A. Gleixner, B. Kim, Y. Johnson, B. Magistretti, M. Marangon, T. Pirovano, A., Bez, R. Atwood, G. Symp. VLSI Tech. Dig. 122 (2006).Google Scholar
25 Pellizzer, F. Pirovano, A. Ottogalli, F. Magistretti, M. Scaravaggi, M. Zuliani, P. Tosi, M. Benvenuti, A., Besana, P. Cadeo, S. Marangon, T. Morandi, R. Piva, R. Spandre, A. Zonca, R. Modelli, A., Varesi, E. Lowrey, T. Lacaita, A. Casagrande, G. Cappelletti, P. and Bez, R. Symp. VLSI. Tech. Dig., 18 (2004).Google Scholar
26 Takaura, N. Terao, M. Kurotsuchi, K. Yamauchi, T. Tonomura, O. Hanaoka, Y. Takemura, R., Osada, K. Kawahara, T. and Matsuoka, H. IEDM Tech. Dig. 897 (2003).Google Scholar
27 Matsuzaki, N. Kurotsuchi, K. Matsui, Y. Tonomura, O. Yamamoto, N. Fujisaki, Y. Kitai, N. Takemura, R. Osada, K. Hanzawa, S. Moriya, H. Iwasaki, T. Kawahara, T. Takaura, N. Terao, M., Matsuoka, M. and Moniwa, M. IEDM Tech. Dig. 758 (2006).Google Scholar
28 Matsui, Y. Kurotsuchi, K. Tonomura, O. Morikawa, T. Kinoshita, M. Fujisaki, Y. Matsuzaki, N., Hanzawa, S. Terao, M. Takaura, N. Moriya, H. Iwasaki, T. Moniwa, M. Koga, T. IEDM Tech. Dig. 769 (2007).Google Scholar
29 Jeong, C.W. Kang, D.H. Ha, D.W. Song, Y..J. Oh, J.H. Kong, J.H. Yoo, J.H. Park, J.H. Ryoo, K.C., Lim, D.W. Park, S.S. Kim, J.I. Oh, Y.T. Kim, J.S. Shin, J.M. Park, Jaehyun, Fai, Y. Koh, G.H., Jeong, G.T. Jeong, H. S. Kim, Kinam, Solid-State Electronics 52, 591 (2008).Google Scholar
30 Cho, S. L. Yi, J. H. Ha, Y. H. Kuh, B. J. Lee, C. M. Park, J. H. Nam, S.D. Horii, H. Cho, B. O., Ryoo, K. C. Park, S. O. Kim, H. S. Chung, U.-I. Moon, J. T. and Ryu, B. I. Symp. VLSI Tech Dig., 96 (2005).Google Scholar
31 Breitwisch, M. Nirschl, T. Chen, C. F. Zhu, Y. Lee, M. H. Lamorey, M. Burr, G. W. Joseph, E., Schrott, A. Philipp, J. B. Cheek, R. Happ, T. D. Chen, S. H. Zaidi, S. Flaitz, P. Bruley, J. Dasaka, R. Rajendran, B. Rossnagel, S. Yang, M. Chen, Y. C. Bergmann, R. Lung, H. L. and Lam, C., Symp. VLSI Tech. Dig., 100 (2007).Google Scholar
32 Happ, T. D. Breitwisch, M. Schrott, A. Philipp, J. B. Lee, M. H. Cheek, R. Nirschl, T. Lamorey, M., Ho, C. H. Chen, S. H. Chen, C. F. Joseph, E. Zaidi, S. Burr, G. W. Yee, B. Chen, Y. C. Raoux, S. Lung, H. L. Bergmann, R. and Lam, C. Symp. VLSI Tech. Dig. 120 (2006).Google Scholar
33 Chao, D.-S. Chen, Y.-C. Chen, F. Chen, M.-J. Yen, P. H. Lee, C.-M. Chen, W.-S. , C. L., Kao, M.-J. and Tsai, M.-J. IEEE Electron Device Lett. 28, 871 (2007).Google Scholar
34 Czubatyj, W. Lowrey, T. Kostylev, S. and Asano, I. E/PCOS 2006.Google Scholar
35 Lee, J. I. Park, H. Cho, S.L. Park, Y.L. Bae, B.J. Park, J.H. Park, J.S. An, H.G. Bae, J.S. Ahn, D.H., Kim, Y.T. Horii, H. Song, S. A. Shin, J.C. Park, S.O. Kim, H.S. Chung, U-In. Moon, J.T. and Ryu, B.I.., Symp. VLSI Tech. Dig. 102 (2007).Google Scholar
36 Im, D. H. Lee, J. I. Cho, S.L. An, H.G. Kim, D.H. Kim, I.S. Park, H. Ahn, D.H. Horii, H. Park, S.O. Chung, U-In, and Moon, J.T. IEDM Tech. Dig. 211 (2008).Google Scholar
37 Chen, W. S. Lee, C. M. Chao, D. S. Chen, Y. C. Chen, F. Chen, C. W. Yen, P. H. Chen, M. J., Wang, W. H. Hsiao, T. C. Yeh, J. T. Chiou, S. H. Liu, M. Y. Wang, T. C. Chein, L. L. Huang, C. M. Shih, N. T. Tu, L. S. Huang, D. Yu, T. H. Kao, M. J. and Tsai, M.-J. IEDM Tech. Dig. 319 (2007).Google Scholar
38 Chen, Y. C. Rettner, C. T. Raoux, S. Burr, G. W. Chen, S. H. Shelby, R. M. Salinga, M. Risk, W. P. Happ, T. D. McClelland, G. M. Breitwisch, M. Schrott, A. Philipp, J. B. Lee, M. H. Cheek, R., Nirschl, T. Lamorey, M. Chen, C. F. Joseph, E. Zaidi, S. Yee, B. Lung, H. L. Bergmann, R. and Lam, C. IEDM Tech. Dig. 777 (2006).Google Scholar
39 Lee, S.-H. Ko, D.-K. Jung, Y. and Agarwal, R. Appl. Phys. Lett. 89, 223116 (2006).Google Scholar
40 Kim, C. Kang, D. Lee, T.-Y. Kim, K. H. P. Kang, Y.-S. Lee, J. Nam, S.-W. Kim, K.-B. and Khang, Y. Appl. Phys. Lett. 94, 193504 (2009).Google Scholar
41 Lee, S. H. Jung, Y. and Agarwal, R. Nature Nanotech. 2, 626 (2007).Google Scholar
42ITRS 2009, available online at http://www.itrs.net Google Scholar
43 Redaelli, A. Pirovano, A. Tortorelli, I. Ottogalli, F. Ghetti, A. Laurin, L. and Beneventi, A. IRPS (2010).Google Scholar
44 Russo, U. Ielmini, D. Redaelli, A. and Lacaita, A. L. IEEE Trans. Electron Devices 55, 515 (2008).Google Scholar