Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:42:30.688Z Has data issue: false hasContentIssue false

Understanding ion beam synthesis of nanostructures: Modeling and atomistic simulations

Published online by Cambridge University Press:  17 March 2011

M. Strobel
Affiliation:
Forschungszentrum Rossendorf, Institut für Ionenstrahlphysik und Materialforschung P.O. Box 510 119, D – 01314 Dresden, Germany CNR–IMETEM, Stradale Primosole 50, I – 95121 Catania, Italy MIRIAM, University of Milan, Via C. Saldini 50, I – 20133 Milano, Italy
K.-H. Heinig
Affiliation:
Forschungszentrum Rossendorf, Institut für Ionenstrahlphysik und Materialforschung P.O. Box 510 119, D – 01314 Dresden, Germany
W. Möller
Affiliation:
Forschungszentrum Rossendorf, Institut für Ionenstrahlphysik und Materialforschung P.O. Box 510 119, D – 01314 Dresden, Germany
Get access

Abstract

Ion implantation, specified by parameters like ion energy, ion fluence, ion flux and sub-strate temperature, has become a well-established tool to synthesize buried low-dimensional nanostructures. In general, in ion beam synthesis the evolution of nanostructures is determined by the competition between ballistic and thermodynamic effects. A kinetic 3D lattice Monte-Carlo model is introduced, which allows for a proper incorporation of collisional mixing and phase separation within supersaturated solid-solutions. It is shown, that for both the ballistically and thermodynamically dominated regimes, the Gibbs-Thomson relation is the key ingredient in understanding nanocluster evolution. Various aspects of precipitate evolution during implantation, formation of ordered arrays of nanophase domains by focused ion implantation and compound nanocluster synthesis are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
2. Wagner, C., Z. Elektrochem. 65, 581 (1961).Google Scholar
3. Cheng, Y.T., Mat. Sci. Rep. 5, 45 (1990).Google Scholar
4. Bolse, W., Mat. Sci. Eng. R 12, 53 (1994).Google Scholar
5. Heinig, K.-H., 1999, unpublished; K.-H. Heinig and M. Strobel, Nucl. Instr. Meth. B, in press.Google Scholar
6. Thomé, L., Rizza, G., Garrido, F., Gusso, M., Tapfer, L. and Quaranta, A., Appl. Phys. A, 67, 241 (1998).Google Scholar
7. Rizza, G., Strobel, M., Heinig, K.-H. and Bernas, H., Nucl. Instr. Meth. B, in press.Google Scholar
8. Enrique, R.A. and Bellon, P., Phys. Rev. Lett. 84, 2885 (2000).Google Scholar
9. Enrique, R.A. and Bellon, P., Phys. Rev. B 60, 14649 (1999).Google Scholar
10. Hanafi, H.I., Tiwari, S. and Khan, I., IEEE Trans. Electron Devices 43, 1553 (1996).Google Scholar
11. Borany, J. von, Heinig, K.-H., Grötzschel, R., Klimenkov, M., Strobel, M., Stegemann, K.-H. and Thees, H.-J., Microelectr. Eng. 48, 231 (1999).Google Scholar
12. Brongersma, M.L., Hartman, J.W. and Atwater, H.A., Phys. Rev. B 62, R16356 (2000).Google Scholar
13. Orloff, J., Rev. Sci. Instrum. 64, 1105 (1993).Google Scholar
14. Martin, G. and Bellon, P., Solid State Physics 50, 189 (1997).Google Scholar
15. Jaraiz, M., Gilmer, G.H., Poate, J.M. and Rubia, T. Diaz de la, Appl. Phys. Lett. 68, 409 (1996).Google Scholar
16. Strobel, M., Ph.D. Thesis, Technische Universitàat Dresden, 1999.Google Scholar
17. Strobel, M., Heinig, K.-H. and Möller, W., Nucl. Instr. Meth. B, in press.Google Scholar
18. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., J. Chem. Phys. 21, 1087 (1953).Google Scholar
19. Martin, G., Phys. Rev. B 30, 1424 (1984).Google Scholar
20. Strobel, M., Heinig, K.-H., Möller, W., Meldrum, A., Zhou, D.S., White, C.W. and Zuhr, R.A., Nucl. Instr. Meth. B 147, 343 (1999).Google Scholar
21. Schmelzer, J., Röpke, G. and Mahnke, R., Aggregation phenomena in complex systems (Wiley-VCH, Weinheim, 1999).Google Scholar
22. Sigmund, P. and Gras-Marti, A., Nucl. Instr. Meth. 182/183, 25 (1981).Google Scholar
23. Biersack, J.P. and Haggmark, L.G., Nucl. Instr. Meth. 174, 257 (1980).Google Scholar
24. Schmidt, B., Heinig, K.-H. and Mücklich, A., Mat. Res. Soc. Symp. Proc. 647, O11.20 (2001).Google Scholar
25. Zuhr, R.A., Budai, J.D., Datskos, P.G., Meldrum, A., Thomas, K.A., Warmack, R.J., White, C.W., Feldman, L.C., Strobel, M. and Heinig, K.-H., Mat. Res. Soc. Symp. Proc. 536, 231 (1999).Google Scholar
26. Shinada, T., Kumura, Y., Okabe, J., Matsukawa, T. and Ohdomari, I., J. Vac. Sci. Technol. B, 16, 2489 (1998).Google Scholar
27. Voorhees, P.W. and Glicksman, M.E., Acta Metall. 32, 2001 (1984); ibid. 2013.Google Scholar
28. Reiss, S. and Heinig, K.-H., Nucl. Instr. Meth. B 84, 229 (1994); ibid. 102, 256 (1995).Google Scholar
29. Strobel, M., Heinig, K.-H. and Möller, W., Comp. Mat. Sci. 10, 457 (1998).Google Scholar
30. Zhu, J.G., White, C.W., Budai, J.D., Withrow, S.P. and Chen, Y., J. Appl. Phys. 78, 4386 (1995).Google Scholar
31. White, C.W., Budai, J.D., Zhu, J.G., Withrow, S.P., Zuhr, R.A., Chen, Y., Hembree, D.M. Jr, Magruder, R.H. and Henderson, D.O., Mat. Res. Soc. Symp. Proc. 358, 169 (1995).Google Scholar
32. White, C.W., Budai, J.D., Zhu, J.G., Withrow, S.P. and Aziz, M.J., Appl. Phys. Lett. 68, 2389 (1996).Google Scholar
33. Zuhr, R.A., Magruder, R.H. III, Anderson, T.A. and Wittig, J.E., Mat. Res. Soc. Symp. Proc. 316, 457 (1994).Google Scholar
34. D'Acapito, F., Battaglin, G., Cattaruzza, E., Gonella, F., Maurizio, C., Mazzoldi, P., Mobilio, S. and Zontone, F., Euro. Phys. J. D 10, 123 (2000).Google Scholar