Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:15:59.405Z Has data issue: false hasContentIssue false

Understanding Glass Deterioration in Museum Collections through Raman Spectroscopy and SIMS analysis

Published online by Cambridge University Press:  01 February 2011

Laurianne Robinet
Affiliation:
The University of Edinburgh, Centre for Materials Science and Engineering, Edinburgh, EH9 3JL, UK;
Katherine Eremin
Affiliation:
Harvard University Art Museums, 32 Quincy Street, Cambridge, MA 02138, USA;
Sarah Fearn
Affiliation:
Department of Materials, Imperial College, London, SW7 2AZ, UK.
Colin Pulham
Affiliation:
The University of Edinburgh, Centre for Materials Science and Engineering, Edinburgh, EH9 3JL, UK;
Christopher Hall
Affiliation:
The University of Edinburgh, Centre for Materials Science and Engineering, Edinburgh, EH9 3JL, UK;
Get access

Abstract

The combination of Raman spectroscopy and Secondary Ion Mass Spectrometry can improve understanding of the chemistry of the glass alteration process. Formic and acetic acids play an important role in the alteration of museum glass objects placed in a humid atmosphere. Raman spectroscopy indicates that the soda-rich glass structure is modified differently when exposed to a humid versus a humid and polluted atmosphere at 60°C. Formic acid was not formed from soda-rich glass in the presence of carbon dioxide, high humidity and light.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1- Clark, D. E., Pantano, C. G., and Hench, L. L., Corrosion of Glass (Books for industry and the glass industry, New York, 1979) 16.Google Scholar
2- Feldmann, M., and Weissmann, R., Journal of Non-Crystalline Solids 218, (1997) 205.Google Scholar
3- Lanford, W. A., Davis, K., Lamarche, P., Laursen, T., Groleau, R., and Doremus, R., Journal of Non-Crystalline Solids 33, (1979) 249.Google Scholar
4- Doremus, R., Journal of Non-Crystalline Solids 19, (1975) 137.Google Scholar
5- Robinet, L., Eremin, K., Cobo del Arco, B., and Gibson, L. T., Journal of Raman Spectroscopy 35, (2004) 662.Google Scholar
6- Eremin, K., Cobo del Arco, B., Robinet, L., and Gibson, L. T., Annales du 16th Congrès International d'Etude Historique du Verre (London, 2003), (in press).Google Scholar
7- Otha, K., Ogawa, H., and Mizuno, T., Applied Geochemistry 15, (2000) 91.Google Scholar
8- Brawer, S. A., and White, W. B., Journal of Chemical Physics 63, 6, (1975) 2421.Google Scholar
9- Furukawa, T., Fox, K. E., and White, W. B., Journal of Chemical Physics 75, (1981) 3226.Google Scholar
10- McMillan, P., American Mineralogist 69, (1984) 622.Google Scholar
11- Colomban, P., Journal of Non-Crystalline Solids 323, (2003) 180.Google Scholar
12- Fearn, S., McPhail, D. S., and Oakley, V., Applied Surface Science 231–232C, (2004) 510.Google Scholar
13- Robinet, L., and Thickett, D., Studies in Conservation 48, (2003) 263.Google Scholar
14- Stolen, R. H., and Walrafen, G. E., Journal of Chemical Physics 64, 6, (1976) 2623.Google Scholar
15- Hartwig, C. H., and Rahn, L. A., Journal of Chemical Physics 67, 9, (1977) 4260.Google Scholar
16- Bunker, B. C., Tallant, D. R., Headley, T. J., Turner, G. L., Kirkpatrick, R. J., Physics and Chemistry of Glasses 29, 3, (1988) 106.Google Scholar