Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:23:45.966Z Has data issue: false hasContentIssue false

Understanding and Controlling Transient Enhanced Dopant Diffusion in Silicon

Published online by Cambridge University Press:  21 February 2011

P.A. Stolk
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
H.-J. Gossmann
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
D.J. Eaglesham
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
D.C. Jacobson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
H.S. Luftman
Affiliation:
AT&T Bell Laboratories, 9999 Hamilton Boulevard, Breinigsville, PA 18031, USA
J.M. Poate
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA
Get access

Abstract

Implanted B and P dopants in Si exhibit transient enhanced diffusion (TED) during initial annealing which arises from the excess interstitials generated by the implant. In order to study the mechanisms of TED, we have used B doping marker layers in Si to probe the injection of interstitials from near-surface, non-amorphizing Si implants during annealing. The in-diffusion of interstitials is limited by trapping at impurities and has an activation energy of -3.5 eV. Substitutional C is the dominant trapping center with a binding energy of 2-2.5 eV. The high interstitial supersaturation adjacent to the implant damage drives substitutional B into metastable clusters at concentrations below the B solid solubility limit. Transmission electron microscopy shows that the interstitials driving TED are emitted from {311} defect clusters in the damage region at a rate which also exhibits an activation energy of 3.6 eV. The population of excess interstitials is strongly reduced by incorporating substitutional C in Si to levels of ∼1019/cm3 prior to ion implantation. This provides a promising method for suppressing TED, thus enabling shallow junction formation in future Si devices through dopant implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hofker, W.K., Werner, H.W., Oosthoek, D.P., and Koeman, N.J., Appl. Phys. 4, 125 (1974).Google Scholar
2 Cho, K., Numan, M., Finstad, T.G., Chu, W.K., Liu, J., and Wortman, J.J., Appl. Phys. Lett. 47, 1321 (1985).Google Scholar
3 Michel, A.E., Rausch, W., Ronsheim, P.A., and Kastl, R.H., Appl. Phys. Lett. 50,416 (1987).Google Scholar
4 Solmi, S. and Servidori, M., Solid State Phenomena 1&2 (1988).Google Scholar
5 Michel, A.E., Nucl. Instrum. Methods B37/38, 379 (1989).Google Scholar
6 Cowern, N.E.B., Janssen, K.T.F., Jos, H.F.F., J. Appl. Phys. 68, 6191 (1990).Google Scholar
7 Giles, M.D., J. Electrochem. Soc. 138, 1160 (1991).Google Scholar
8 Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
9 Packan, P.A. and Plummer, J.D., Appl. Phys. Lett. 56, 1787 (1990).Google Scholar
10 Cowern, N.E.B., van de Walle, G.F.A., Zalm, P.C., and Oostra, D.J., Phys. Rev. Lett. 69, 116 (1992).Google Scholar
11 Park, H. and Law, M.E., J. Appl. Phys. 72, 3431 (1992).Google Scholar
12 Griffin, P.B., Lever, R.F., Packan, P.A., and Plummer, J.D., Appl. Phys. Lett. 64, 1242 (1994).Google Scholar
13 Ozturk, M.C., Wortman, J.J., Osburn, C.M., Ajmera, A., Rozgonyi, G.A., Frey, E., Chu, W.-K., and Lee, C., IEEE Trans. Electron. Devices 35, 659 (1988).Google Scholar
14 Walker, A.J., Woerlee, P.H., Pomp, H.G., and Cowern, N.E.B., J. Appl. Phys. 73,4048 (1993).Google Scholar
15 Nishikawa, S., Tanaka, A., and Yamaji, T., Appl. Phys. Lett. 60, 2270 (1992).Google Scholar
16 Wong, H., Cheung, N.W., Chu, P.K., Liu, J., and Mayer, J.W., Appl. Phys. Lett. 52, 1023 (1988).Google Scholar
17 Liefting, J.R., Custer, J.S., and Saris, F.W., Mat. Res. Soc. Symp. Proc. 235, 179 (1992); Mater. Sei. Engineer. B25,60(1994).Google Scholar
18 Isomae, S., Ishiba, T., Ando, T., and Tamura, M., J. Appl. Phys. 74, 3815 (1993).Google Scholar
19 Gossmann, H.-J., Unterwald, F.C., and Luftman, H.S., J. Appl. Phys. 73, 8237 (1993).Google Scholar
20 Gossmann, H.-J., Rafferty, C.S., Luftman, H.S., Unterwald, F.C., Boone, T., and Poate, J.M., Appl. Phys. Lett. 63, 639 (1993).Google Scholar
21 Cowern, N.E.B., Appl. Phys. Lett. 64, 2646 (1994).Google Scholar
22 The effective depth of the source from the sample surface is assumed to be 600 à.Google Scholar
23 Gossmann, H.-J., Asoka-Kumar, P., Leung, T.C., Nielsen, B., Lynn, K.G., Unterwald, F.C., and Feldman, L.C., Appl. Phys. Lett. 61, 540 (1992).Google Scholar
24 Morehead, F.F., Mat. Res. Soc. Symp. Proc. 104, 99 (1988).Google Scholar
25 Bracht, H., Stolwijk, N.A., and Mehrer, H., Mat. Sci. Forum 143-147, 785 (1994).Google Scholar
26 Griffin, P.B., Ahn, S.T., Tiller, W.A., and Plummer, J.D., Appl. Phys. Lett. 51, 115 (1987).Google Scholar
27 Stolk, P.A. et al. , Appl. Phys. Lett. 66, 568 (1995).Google Scholar
28 Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J., and Poate, J.M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
29 Bourret, A., Inst. Phys. Conf. Ser. 87, 39 (1987).Google Scholar
30 Gösele, U., Mat. Res. Soc. Symp. Proc. 59,419 (1986).Google Scholar
31 Hill, M.J. and van Iseghem, P.M. in Semiconductor Silicon 1977, Huff, H.R. and Sirtl, E., eds. (The Electrochemical Society, Princeton, 1977), p. 715.Google Scholar
32 Olson, G.L. and Roth, J.A., Mater. Sci. Rep. 3, 1 (1988).Google Scholar
33 Strane, J.W., Stein, H.J., Lee, S.R., Doyle, B.L., Picraux, S.T., and Mayer, J.W., Appl. Phys. Lett. 63, 2786 (1993).Google Scholar
34 Kimerling, L.C., Asom, M.T., Benton, J.L., Drevinsky, P.J., and Caefer, C.E., Mater. Sci. Forum 38-41, 141 (1989).Google Scholar
35 Song, L.W. and Watkins, G.D., Phys. Rev. B 42, 5759 (1990).Google Scholar
36 Davies, G., Kun, K.T., and Reade, T., Phys. Rev. B 44, 12146 (1991).Google Scholar
37 Stolk, P.A., Eaglesham, D.J., Gossmann, H.-J., and Poate, J.M., Appl. Phys. Lett. 66, 1370 (1995).Google Scholar