Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T23:09:58.195Z Has data issue: false hasContentIssue false

Undercooling Experiments in a High Temperature Differential Scanning Calorimeter

Published online by Cambridge University Press:  21 February 2011

M. Baricco
Affiliation:
Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Università di Torino, Via P.Giuria, 9 -1–10125 TORINO (Italy), [email protected]
E. Ferrari
Affiliation:
Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Università di Torino, Via P.Giuria, 9 -1–10125 TORINO (Italy), [email protected]
L. Battezzati
Affiliation:
Dipartimento di Chimica Inorganica, Chimica Fisica e Chimica dei Materiali, Università di Torino, Via P.Giuria, 9 -1–10125 TORINO (Italy), [email protected]
Get access

Abstract

Several samples of metals and alloys have been undercooled during scanning in a high temperature DSC. Liquid Ni was undercooled of about 230 K when previously fluxed in molten B2O3. From enthalpy data of melting and solidification as a function of temperature, the excess heat capacity of liquid metals and alloys was evaluated. The specific heat of the liquid is definitely higher than that of the corresponding crystalline phases for glass-forming alloys, whereas it is close to that of the solid for pure metals. The Ni-B system has been studied in detail around the Ni-Ni3B eutectic. On undercooling, a new metastable phase (Ni23B6) was produced. A metastable Ni-B phase diagram has been drawn using data of thermal analysis of several alloys containing the metastable phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Herlach, D.M., Willnecker, R., Rapidly Solidified Alloys, edited by Liebermann, H. (M. Dekker Inc., New York, 1993), p. 79.Google Scholar
2 Kelton, K.F., Sol. State Phys. 45, 75 (1991).Google Scholar
3 Herlach, D.M., Cochrane, R.F., Egry, I., Fecht, H.J., Greer, A.L., Int. Mater. Rev. 38, 273 (1993).Google Scholar
4 Barth, M., Joo, F., Wei, B., Herlach, D.M., J. Non-cryst. Sol. 156–158, 398 (1993).Google Scholar
5 Perepezko, J.H. and Paik, J.S., J. Non-cryst. Sol. 61–62, 113 (1984).Google Scholar
6 Wilde, G., Görler, G.P., Willnecker, R., Dietz, G., Appl. Phys. Lett. 65, 397 (1994).Google Scholar
7 Baricco, M., Battezzati, L., Rizzi, P., J. All. Comp. 220, 212 (1995).Google Scholar
8 Cech, R.E. and Turnbull, D., J. Metals 3, 242 (1951).Google Scholar
9 Turnbull, D. and Cech, R.E., J. Appl. Phys. 21, 804 (1950).Google Scholar
10 Gomersall, D.W., Shirashi, S.Y., Ward, R.G., J. Aust. Inst. Met. 10, 220 (1965).Google Scholar
11 Dinsdale, A.T., Calphad 15, 317 (1991).Google Scholar
12 Desai, P.D., Int.J. Thermophys. 8, 763 (1987).Google Scholar
13 Gillesen, F. and Herlach, D.M., J. Non-cryst. Sol. 117–118, 555 (1990).Google Scholar
14 Battezzati, L. and Baricco, M., Phil. Mag. B56, 139 (1987).Google Scholar
15 Teppo, O. and Taskinen, P., Mat. Sci. Tech. 206, 211 (1993).Google Scholar
16 Vitta, S., Proctor, C.S., Cochrane, R.F., Greer, A.L., Mat. Sci. Eng. A133, 799 (1991)Google Scholar
17 Müller, K. and von Heimendhal, M., J. Mater. Sci. 17, 2525 (1982)Google Scholar
18 Schöbel, J.-D. and Stadelmaier, H., Z. Metallkd. 56, 856 (1965)Google Scholar