Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-07T19:57:53.611Z Has data issue: false hasContentIssue false

Ultraviolet (UV) photodetectors fabricated from multi-walled carbon nanotubes (MWCNTs) and polyvinyl-alcohol (PVA) coated ZnO nanoparticles

Published online by Cambridge University Press:  22 August 2012

Dali Shao
Affiliation:
Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, USA, [email protected]
Liqiao Qin
Affiliation:
Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, USA, [email protected]
Shayla Sawyer
Affiliation:
Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, USA, [email protected]
Get access

Abstract

Enhanced near band-edge (NBE) emission was observed from composite structures fabricated from a PVA coated ZnO (PVA-ZnO) nanoparticle thin film embedded with multi-walled carbon nanotubes (MWCNTs). The enhancement is attributed to the resonant coupling between the bandgap transition of the semiconductor and the surface plasmon (SP) of MWCNTs. Moreover, the PVA-ZnO/MWCNTs/PVA-ZnO composite structures show faster transient response, which is due to the carrier transportation process in the composite structure. Reductions are observed for both photocurrent to dark current ratio and intensity of photoresponsivity, demonstrating a tradeoff between the time transient response and the detectivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shipway, A. N., Katz, E., and Willner, I., “Nanoparticle arrays on surfaces for electronic, optical and sensoric applications,” Chem. Phys. Chem. vol. 1, issue 1, pp. 1852, Aug. 2000.3.0.CO;2-L>CrossRefGoogle Scholar
Favier, F., Walter, E. C., Zach, M. P., Benter, T., and Penner, R. M., “Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays,” Science, vol. 293, no. 5538, pp. 22272231, Sep. 2001.CrossRefGoogle ScholarPubMed
Li, C., Zhang, D. H., Liu, X. L., Han, S., Tang, T., Han, J., and Zhou, C. W., “In2O3 nanowires as chemical sensors,” Appl. Phys. Lett. vol. 82, no. 10, pp. 16131615, Mar. 2003.CrossRefGoogle Scholar
Korotcenkov, G., Cerneavschi, A., Brinzari, V., Vasiliev, A., Ivanov, M., Cornet, A., Morante, J., Cabot, A., and Arbiol, J., “In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors,” Sens. Actuators B: Chem. vol. 99, issue 2-3, pp. 297, May 2003.CrossRefGoogle Scholar
Ivanovskaya, M., Gurlo, A., and Bogdanov, P., “Mechanism of O3 and NO2 detection and selectivity of In2O3 sensors,” Sens. Actuators B: Chem. vol. 77, issue 1-2, pp. 264267, June 2001.CrossRefGoogle Scholar
Sadek, A. Z., Baker, C., Powell, D. A., Wlodarski, W. Shin, C., Kaner, R. B., and Kalantar-zadeh, K., “A Polyaniline/In2O3 Nanofiber Composite Based Layered SAW Transducer for Gas Sensing Applications,” Nanotechnology, vol. 17 (17), pp. 44884492, 2006.CrossRefGoogle Scholar
Chen, L. C., “Indium oxide violet photodiodes,” Phys. Eur. Phys. J. Appl. Phys. 35: 1315, July 2006.CrossRefGoogle Scholar
Chopra, K. L., Major, S., and Pandya, D. K., Thin Solid Films, vol. 102, issue 1, pp.146, 1983.CrossRefGoogle Scholar
Ginley, D. S. and Bright, C., “Transparent conducting oxides,” Mater. Res. Soc. Bull. 25, pp. 1518, 2000.CrossRefGoogle Scholar
Xiao, X. H., Ren, F., Zhou, X. D., Peng, T. C., Wu, W., Peng, X. N., Yu, X. F., and Jiang, C. Z., “Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO,” Appl. Phys. Lett.. vol. 97, 071909, 2010.CrossRefGoogle Scholar
Ni, W. H., An, J., Lai, C. W., Onga, H. C. and Xu, J. B., “Emission enhancement from metallodielectric-capped ZnO films,” Appl. Phys. Lett. 100, 026103, 2006.Google Scholar
Wu, K., Lu, Y., He, H., Huang, J., Zhao, B., and Ye, Z., “Enhanced near band edge emission of ZnO via surface plasmon resonance of aluminum nanoparticles,” Appl. Phys. Lett. 110, 023510, 2011.Google Scholar
Hwang, S. W., Shin, D. H., Kim, C. O., Hong, S. H., Kim, M. C., Kim, J., Lim, K. Y., Kim, S., Choi, Suk-Ho, Ahn, K. J., Kim, G., Sim, S. H., and Hong, B. H., “Plasmon-Enhanced Ultraviolet Photoluminescence from Hybrid Structures of Graphene/ZnO Films,” Phys. Rev. Lett. 105, 127403 (2010).CrossRefGoogle Scholar
Kim, S., Shin, D. H., Kim, C. O., Hwang, S. W., Choi, Suk-Ho, Ji, S., and Koo, Ja-Yong, Appl. Phys. Lett. 94 (2009) 213113.CrossRefGoogle Scholar
Dutta, M., Basak, D., Chem. Phys. Lett 480 (2009) 253257.CrossRefGoogle Scholar
Zhu, Y., Elim, H. I., Foo, Yong-Lim, Yu, T., Liu, Y., Ji, W., Lee, Jim-Yang, Shen, Z., Thye-Shen Wee, A., Thiam-Leong Thong, J., and Sow, Chorng-Haur, “Multiwalled Carbon Nanotubes Beaded with ZnO Nanoparticles for Ultrafast Nonlinear Optical Switching,” Adv. Mater., 18, 587592, 2006.CrossRefGoogle Scholar
Qin, L., Shing, C., Sawyer, S., and Dutta, P. S., Opt. Mater. 33 (2011) 359362.CrossRefGoogle Scholar
Monticone, S., Tufeu, R., Kanaev, A., J. Phys. Chem. B 102 (1998) 2854.Google Scholar
Wu, Y., Tok, A., Boey, F., Zeng, X., Zhang, X., Appl. Surf. Sci. 253 (2007) 5473.CrossRefGoogle Scholar
Wu, L., Wu, Y., Pan, X., Kong, F., Opt. Mater. 28 (2006) 418.Google Scholar
Raether, H., Excitation of Plasmons and Interband Transitions by Electrons, Springer, New York, 1980.Google Scholar
Nanostructured Materials and Nanotechnology, Academic Press, New York, 2002 Google Scholar
Ago, H., Kugler, T., Cacialli, F., Salaneck, W.R., Shaffer, M.S.P., Windle, A.H., Friend, R.H., J. Phys. Chem. B 103 (1999) 8116.CrossRefGoogle Scholar
Robel, I., Bunker, B.A., Kamat, P. V., Adv. Mater. 17 (2005) 2458.CrossRefGoogle Scholar