Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:12:42.992Z Has data issue: false hasContentIssue false

Ultraviolet Sensor Based on a Silica Optical Microresonator

Published online by Cambridge University Press:  30 July 2014

Simin Mehrabani
Affiliation:
Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, U.S.A.
Audrey Harker
Affiliation:
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, U.S.A.
Andrea Armani
Affiliation:
Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, U.S.A.
Get access

Abstract

It is well known that exposure to ultraviolet (UV) light can result in various physical and psychological diseases. Therefore, there is a strong demand for a reliable sensor to monitor UV exposure levels in the physiologically relevant intensity ranges of mW/cm2. Here, we demonstrate a UV sensor based on a silica whispering gallery mode microresonator. This UV sensor works over physiologically relevant intensity ranges with linear performance both in the forward and backward operating directions, with very high signal-to-noise ratio that can be utilized in monitoring the UV exposure for various applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tóth, V., Somlai, B., Hatvani, Z., Szakonyi, J., Gaudi, I. and Kárpáti, S., Pathology & Oncology Research 19(2), 323328 (2013).Google Scholar
Hart, P. H., Gorman, S. and Finlay-Jones, J. J., Nature Reviews Immunology 11(9), 584596 (2011).CrossRefGoogle Scholar
Saladi, R. N. and Persaud, A. N., Drugs of Today 41(1), 3754 (2005).CrossRefGoogle Scholar
Yoon, J.-K., Seo, G.-W., Cho, K.-M., Kim, E.-S., Kim, S.-H. and Kang, S.-W., Photonics Technology Letters, IEEE 15(6), 837839 (2003).CrossRefGoogle Scholar
Kim, K. T., Moon, N. I. and Kim, H.-K., Sensors and Actuators A: Physical 160(1), 1921 (2010).CrossRefGoogle Scholar
Jang, S.-W., Son, S.-J., Kim, D.-E., Kwon, D.-H., Kim, S.-H., Lee, Y.-H. and Kang, S.-W., Photonics Technology Letters, IEEE 18(1), 8284 (2006).CrossRefGoogle Scholar
Wang, W.-S., Wu, T.-T., Chou, T.-H. and Chen, Y.-Y., Nanotechnology 20(13), 135503 (2009).CrossRefGoogle Scholar
Wang, Z., Zhan, X., Wang, Y., Muhammad, S., Huang, Y. and He, J., Nanoscale 4(8), 26782684 (2012).CrossRefGoogle ScholarPubMed
Pang, H.-F., Fu, Y.-Q., Li, Z.-J., Li, Y., Ma, J.-Y., Placido, F., Walton, A. J. and Zu, X.-T., Sensors and Actuators A: Physical 193, 8794 (2013).CrossRefGoogle Scholar
Harker, A., Mehrabani, S. and Armani, A. M., Optics letters 38(17), 34223425 (2013).CrossRefGoogle Scholar
Shi, C., Mehrabani, S. and Armani, A., Optics Letters 37(10), 16431645 (2012).Google Scholar
Mehrabani, S., Maker, A. and Armani, A., Sensors 14(4), 58905928 (2014).CrossRefGoogle ScholarPubMed
Hawk, R. M., Chistiakova, M. V. and Armani, A. M., Optics letters 38(22), 46904693 (2013).CrossRefGoogle Scholar
He, L., Özdemir, Ş. K., Zhu, J., Kim, W. and Yang, L., Nature nanotechnology 6(7), 428432 (2011).CrossRefGoogle Scholar
Cheema, M. I., Mehrabani, S., Hayat, A. A., Peter, Y.-A., Armani, A. M. and Kirk, A. G., Optics express 20(8), 90909098 (2012).CrossRefGoogle Scholar
Mehrabani, S., Kwong, P., Gupta, M. and Armani, A. M., Applied Physics Letters 102, 241101 (2013).Google Scholar
Maker, A. J. and Armani, A. M., Applied Physics Letters 103(12), 123302 (2013).CrossRefGoogle Scholar
Zhang, X. and Armani, A. M., Optics express 21(20), 2359223603 (2013).CrossRefGoogle Scholar
Wakaki, M., Shibuya, T. and Kudo, K., Physical properties and data of optical materials. (CRC Press, 2010).Google Scholar
Armani, D., Kippenberg, T., Spillane, S. and Vahala, K., Nature 421 (6926), 925-928 (2003).CrossRefGoogle Scholar
Maker, A. and Armani, A., Journal of visualized experiments: JoVE (65), 633-636 (2011).Google Scholar