Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T06:29:08.073Z Has data issue: false hasContentIssue false

Ultraviolet Irradiation Induced Compaction and Photoetching in Amorphous, Thermal SiO2

Published online by Cambridge University Press:  25 February 2011

C. Fiori
Affiliation:
Centre National des Télécommunication, BP 98, 38243 MEYLAN CEDEX, France.
R. A. B. Devine
Affiliation:
Centre National des Télécommunication, BP 98, 38243 MEYLAN CEDEX, France.
Get access

Abstract

Laser irradiation (λ = 248 nm, E = 5 eV) of thermal, amorphous SiO2 is found to produce thermally reversible, linear compaction reaching a maximum of 16 % (accumulated, incident dose of ∼ 2000 J/cm2 followed by irreversible compaction and photoetching. Assuming the volume fluctuation to be ΔV/V = 3(Δ1/1)/(1+2σ) this corresponds to a maximum volume fluctuation of −36 %. An approximately linear refractive index versus ΔV/V relationship found in the linear compaction regime agrees with the predictions of the Lorentz-Lorenz law. Laser compaction results are found to be consistent with those obtained using hydrostatic pressure. That is argued by comparison with crystalline SiO2 polymporph, that compaction occurs via collapse of a high order ring structure into one having predominately 2 or 3 membered rings. Irreversible compaction/etching occurs when the lattice can no longer support a reduction in ring dimension and dangling bond defects are created. The presence of a large number of defects is sufficient for mechanism of superficial desorption and photoetching to become important.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tanimura, K., Tanaka, T. and Itoh, N., Phys. Rev. Lett. 51 423 (1983)CrossRefGoogle Scholar
2. Stathis, J. H. and Kastner, M.A., Phys. Rev. B 29 7079 (1984)Google Scholar
3. Primak, W. and Kampwirth, R., J. Appl. Phys. 39 5651 (1968) J. Appl. Phys. 40 685 (1969), J. Appl. Phys 40 2565 (1969)CrossRefGoogle Scholar
4. Primak, W., . Appl. Phys. 43 2745 (1972)Google Scholar
5. Kelly, R., Surf. Science 90 280 (1979)Google Scholar
6. Fiebelman, P. J. and K-notek, M. L., Phys. Rev. B 18 6531 (1978)Google Scholar
7. Lowdermilk, W. Howarl and Milam, D., SPIE 476 143 (1984) 195 Google Scholar
8. Smith, W. Lee, Bechtel, J. H. and Bloembergen, N., Phys. Rev. B15 4039 (1977)Google Scholar
9. Merkle, L. D., Koumvakalis, N. and Bass, M., . Appl. Phys. 55 772 (1984)CrossRefGoogle Scholar
10. EerNisse, E. P. and Norris, C. B., J. Appl. Phys. 45 5196 (1974)CrossRefGoogle Scholar
11. Pfeffer, R., J. AppI. Phys. 57 5176 (1985)Google Scholar
12. Fiori, C. and Devine, R. A. B., Phys. Rev. Letts 52 2081 (1984)Google Scholar
13. Fiori, C. and Devine, R.A.B., Phys. Rev. B (in press 1986)Google Scholar
14. Arndt, J. and Sthffer, D., Phys. and Chem. of Glasses 10 117 (1969)Google Scholar
15. Arndt, J., Phys. and Chem. Glasses 24 104 (1983)Google Scholar
16. Grimsditch, M., Phys. Rev. Letts. 52 2379 (1984)Google Scholar
17. Born, M. and Wolf, E., Principles of Optics (Pergamon Press, New York 1983) 6th edition p 88 Google Scholar
18. Primak, W. and Post, D., J. AppI. Phys. 30 779 (1959)Google Scholar
19. Mueller, H., Phys. Rev. 47 947 (1935) and J. Am. Ceram. Soc. 21 27 (1938)CrossRefGoogle Scholar
20. Smith, J. V. and Blackwell, C.S., Nature 303 223 (1983)Google Scholar
21. Wickoff, R. W. G., Crystal Structures (Interscience, New York 1983) Vol.1 2nd editionGoogle Scholar
22. Landolt-Börnstein, , Optische Konstanten (Springer Verlag, Berlin 1962) Vol.8Google Scholar
23. Galeener, F. L., Sol. State Comm. 44 1037 (1982)Google Scholar
24. Galeener, F. L., Barrio, R. A., Martinez, E. and Elliott, R.J., Phys. Rev. Letts. 53 2429 (1984)Google Scholar
25. Revesz, A. G. and Walrafen, G. E., J. Non-Cryst. Solids 54 323 (1983)Google Scholar
26. Tathachari, Y. T. and Tiller, W. A., J. Appl. Phys. 57 1805 (1985)Google Scholar
27. Dupree, R. and Pettifer, R.F., Nature, 308 523 (1984)Google Scholar
28. Dupree, R., Holland, D. and Williams, D.S., Phil. Mag B50 L13 (1984)Google Scholar
29. Maria, D. J. Di, Theis, T.N., Kirtley, J.R., Pesavento, F.L., Dong, D. W. and Brorson, S.D., J. Appl. Phys. 57 1214 (1985)Google Scholar
30. O'Reilly, E. P. and Robertson, J., Phys. Rev. B27 3780 (1983)CrossRefGoogle Scholar
31. Fiori, C. and Devine, R. A. B., Appl. Phys. Lett. 47 361 (1985)Google Scholar
32. Martinez, E. and Yndurain, F., Phys. Rev. B24 5418 (1981)Google Scholar