Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:31:25.527Z Has data issue: false hasContentIssue false

Ultraviolet Assisted Pulsed Laser Deposition of Thin Oxide Films

Published online by Cambridge University Press:  10 February 2011

V. Craciun
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, FL 32611
J. Howard
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, FL 32611
R. K. Singh
Affiliation:
Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

The properties of Y2O3, ITO (indium tin oxide), and TaSi2 thin layers grown using a new in-situ ultraviolet (UV)-assisted pulsed laser deposition (UVPLD) technique have been studied. X-ray diffraction investigations showed that with respect to conventional PLD grown films under similar conditions, but without UV illumination, UVPLD grown films exhibited better crystallinity, especially for growth at low substrate temperatures, from 200 °C up to 450 °C, depending on the material. X-ray photoelectron spectroscopy investigations showed that UVPLD layers contained less physisorbed oxygen than the conventional PLD layers, exhibiting a better overall stoichiometry. These results suggest that during the ablation-growth process, UV radiation increases the surface mobility of adatoms and provides more reactive gaseous species. Both factors contribute to the crystalline growth and are especially effective at moderate processing temperatures, where the thermal energy available for the process is comparatively low.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example Advances in Laser Ablation of Materials, edited by Singh, R. K., Lowndes, D. H., Chrisey, D. B., Fogarassy, E., and Narayan, J., MRS Proc. Vol. 526, Warrendale, PA, 1989.Google Scholar
2. Otis, C. E., Gupta, A., and Braren, B., Appl. Phys. Lett. 62, 102 (1993).10.1063/1.108824Google Scholar
3. Takahasi, M., Takai, Y., Supercond. Sci. technol. 11 265 (1998).10.1088/0953-2048/11/3/002Google Scholar
4. Craciun, V., Craciun, D., and Boyd, I. W., Electronics Letters 34, 1527 (1998)10.1049/el:19981048Google Scholar
5. Craciun, V., Craciun, D., Andreazza, P., Perriere, J., and Boyd, I. W., Appl. Surf. Sci. 138–139, 58 (1999).Google Scholar
6. Cho, K. G., Kumar, D., Jones, S. L., Lee, D. G., Holloway, P. H., and Singh, R. K., J. Electrochem. Soc. 145, 3456 (1998).10.1149/1.1838827Google Scholar
7. Cho, K. G., Kumar, D., Holloway, P. H., and Singh, R. K., Appl. Phys. Lett. 73, 3058 (1998).10.1063/1.122671Google Scholar
8. Baulch, D. L., Cox, R. A., Hampson, R. F., Jr., Kerr, J. A., Troe, J., and Watson, R.T., J. Phys. Chem. Ref. Data 9 295 (1980).10.1063/1.555619Google Scholar
9. Choi, S. C., Cho, M. H., Whangbo, S. W., Whang, C. N., Hong, C. E., Kim, N. Y., Jeon, J. S., Lee, S. I., and Lee, M. Y., Nucl. Instr. Meth. B 121, 170 (1997).10.1016/S0168-583X(96)00589-7Google Scholar
10. Ingo, G. M. and Marietta, G., Nucl. Instr. Meth. B 116 440 (1996).10.1016/0168-583X(96)00085-7Google Scholar
11. Duraud, J. P., Jollet, F., Thromat, N., Gautier, M., Maire, P., le Gressus, C., and Dartyge, E., J. Am. Ceram. Soc. 73, 2467 (1990).10.1111/j.1151-2916.1990.tb07614.xGoogle Scholar
12. Handbook of optical constants of solids II, pp. 1090–, Ed. by D., Palik, Boston, Academic Press 1991.Google Scholar
13. Teghil, R., Marotta, V., Guidoni, A. Giardini, Palma, T. M. Di, and Flamini, C., Appl. Surf. Sci. 138–139, 522 (1999)10.1016/S0169-4332(98)00448-6Google Scholar
14. Craciun, V., Elders, J., Gardeniers, J. G. E., and Boyd, I. W., Appl. Phys. Lett. 65 2963 (1994).10.1063/1.112478Google Scholar