Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:04:13.492Z Has data issue: false hasContentIssue false

Ultrathin Silicon Oxide and Nitride – Silicon Interface States

Published online by Cambridge University Press:  10 February 2011

L.J. Brillson
Affiliation:
Departments of Electrical Engineering, Physics, and Center for Materials Research, The Ohio State University, Columbus, OH 43210-1272, [email protected]
A.P. Young
Affiliation:
Departments of Electrical Engineering, Physics, and Center for Materials Research, The Ohio State University, Columbus, OH 43210-1272
J. Schäfer
Affiliation:
Departments of Electrical Engineering, Physics, and Center for Materials Research, The Ohio State University, Columbus, OH 43210-1272
H. Niimi
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
G. Lucovsky
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

Local electronic states at nanometer-thick silicon oxide and nitride films on Si can be studied on an unprecedented scale using low - energy cathodoluminescence spectroscopy to observe optical transitions of defect bonding arrangements at ultrathin film interfaces prepared by low -temperature plasma deposition. Our results illustrate significant differences in the dependence of specific defects at the oxide versus nitride interfaces on thermal annealing and hydrogenation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Buchanan, D.A. and Lo, S.-H., in The Physics and Chemistry of SiO2 and the SiO2-Si Interface, edited by Massoud, H.Z., Poindexter, E.H., and Helms, C.R. (Electrochemical Society, Pennington, NJ 1996), pp. 31322.Google Scholar
2 Yasuda, T., Ma, Y., Habermehl, S., and Lucovsky, G., Appl. Phys. Lett. 60, p. 434 (1992).10.1063/1.106626Google Scholar
3 Brillson, L.J., Richter, H.W., Slade, M.L., Weinstein, B.A., and Shapira, Y., J. Vac. Sci. Technol. A3, p.1011 (1985).10.1116/1.573110Google Scholar
4 Brillson, L.J. and Viturro, R.E., Scanning Electron Microsc. 2, p. 789 (1988).Google Scholar
5 Brillson, L.J. in Handbook on Semiconductors, Volume 1, edited by Landsberg, P. T. (North-Holland, Amsterdam 1992), ch.7, pp.281417.Google Scholar
6 Klein, C.A., J. Appl. Phys. 39, 2029 1968.10.1063/1.1656484Google Scholar
7 Ausman, G.A. Jr. and McLean, F.B., Appl. Phys. Lett. 26, 173 (1975).10.1063/1.88104Google Scholar
8 Everhart, T.E. and Hoff, P.H., J. Appl. Phys. 42, p. 5837 (1971).10.1063/1.1660019Google Scholar
9 Young, A.P., Schdäfer, J., Jessen, G.H., Bandhu, R., Brillson, L.J., Lucovsky, G., and Niimi, H., J. Vac. Sci. Technol. B16, p.2177 (1998).10.1116/1.590145Google Scholar
10 Schafer, J., Young, A.P., Brillson, L.J., Niimi, H. and Lucovsky, G., Appl. Phys. Lett. 73, p. 791 (1988).10.1063/1.122003Google Scholar
11 Wang, F., Wolfe, D.M., Hinds, B.J., Lucovsky, G., Platz, R., and Wagner, S. in Mat. Res. Soc. Symp. Proc. 507, p. 267 (1996).10.1557/PROC-507-267Google Scholar
12 Knights, J.C., Street, R.A., and Lucovsky, G., J. Non-Cryst. Solids 35–36, p. 279 (1980).10.1016/0022-3093(80)90607-9Google Scholar
13 Canham, L., Mat. Res. Soc. Bull. July, 1993, pp.2228 and references therein.10.1557/S0883769400037490Google Scholar
14 Phillip, H.R. and Taft, E.R., Phys. Rev. 120, p.37 (1960).10.1103/PhysRev.120.37Google Scholar
15 Chelikowsky, J.R. and Cohen, M.L., Phys. Rev. B 14, p.556 (1976).10.1103/PhysRevB.14.556Google Scholar
16 Street, R.A., Adv. Phys. 30, p.593 (1981).10.1080/00018738100101417Google Scholar
17 Lee, D.R., Parkeer, C., Hauser, J.R., and Lucovsky, G., J. Vac.Sci.Technol. B 13, p. 1799 (1995).Google Scholar
18 Lenahan, P.M. and Conley, J.F. Jr., J. Vac. Sci. Technol. 16, p.2134 (1998).10.1116/1.590301Google Scholar