No CrossRef data available.
Article contents
Ultrathin Nitride Films Grown Under Low-Energy Ion Bombardment
Published online by Cambridge University Press: 22 February 2011
Abstract
Bombardment of silicon surfaces by low-energy nitrogen ions has been investigated as a possible process for growing films of silicon nitride at relatively low temperature(<500°C). Broad ion beams of energy 300–1200eV have been used to grow ultrathin silicon nitride films. Film thickness and chemical states are analyzed using ellipsometery, X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy(AES). As a result, thicknesses dependence on ion energy, substrate temperature and implantation time have been investigated. The thicknesses of films obtained appear to increase with ion energy in the range from 300 to 1200eV, and with time of bombardment. The thicknesses are also observed to vary slightly with substrate temperature. The growth mechanism has also been investigated and discussed. The average activation energy of nitridation rates is about 3.5meV which indicates nonthermal process kinetics, compared to an activation energy of 0.2–0.6eV for thermal nitridation. AES results show that the atomic ratio [N]/[Si] is about 1.5, larger than that of pure Si3N4. All the analyses show that silicon nitride films of about 60Å thickness have been grown on silicon by low-energy ion beam nitridation.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1994