Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-04T21:33:20.826Z Has data issue: false hasContentIssue false

Ultrathin Gate Oxides with Shallow Nitrogen Implants as Effective Barriers to Boron Diffusion

Published online by Cambridge University Press:  10 February 2011

Yoshi Ono
Affiliation:
Sharp Labs of America, 5700 NW Pacific Rim Blvd., Camas, WA 98607
Yanjun Ma
Affiliation:
Sharp Labs of America, 5700 NW Pacific Rim Blvd., Camas, WA 98607
Sheng-Teng Hsu
Affiliation:
Sharp Labs of America, 5700 NW Pacific Rim Blvd., Camas, WA 98607
Get access

Abstract

Plasma immersion ion implantation (PIII) has been employed to controllably place nitrogen ions from an inductively coupled plasma into a thin furnace grown gate oxide 2.0nm thick with implant voltages from 25 to 500V. Control of the implant energy enables shallow implantation confining the nitrogen mainly within the oxide. Rapid thermal annealing is essential in repairing any damage to the implanted silicon dioxide and silicon while consolidating the bonding of nitrogen into the oxide film prior to gate polysilicon deposition. High frequency capacitance-voltage measurements of capacitors made with BF2+ implanted gates throughout a series of furnace anneals demonstrates the efficiency for blocking boron compared to non-nitrided oxides of similar thickness. Tddb measurements verify excellent reliability compared to a non-implanted oxide for both stress polarities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Momose, H.S., Morimoto, T., Ozawa, Y., Yamabe, K., and Iwai, H., IEEE Trans. Electron Devices 42, 704 (1995)10.1109/16.372075Google Scholar
2 Kim, B.Y., Luan, H.F., and Kwong, D.L., IEDM Tech. Dig. 463 (1997)Google Scholar
3 Parker, C.G., Lucovsky, G., and Hauser, J.R., IEEE Electron Device Lett. 19, 106 (1998)Google Scholar
4 Shi, Y, Wang, X, and Ma, T.-P, IEEE Trans. Electron Devices 46, 362 (1999)10.1109/16.737445Google Scholar
5 Hattangady, S.V., Kraft, R., Grider, D.T., Douglas, M.A., Brown, G.A., Tiner, P.A., Kuehne, J.W., Nicollian, P.E., and Pas, M.F., IEDM Tech Dig. 495 (1996)Google Scholar
6 Liu, C.T., Ma, Y., Luftman, H., and Hillenius, S.J., IEEE Electron Device Lett. 18, 212 (1997)10.1109/55.568768Google Scholar
7 Chao, T.S., Liaw, M.C., Chu, C.H., Chang, C.Y., Chien, C.H., Hao, C.P., and Lei, T.F., Appl. Phys. Lett. 69, 1781 (1996)10.1063/1.117484Google Scholar
8 Chou, A.I., Lin, C., Kumar, K., Chowdhury, P., Gardner, M., Gilmer, M., Fulford, J., and Lee, J.C., IEEE International Reliability Phys. Symp. Proceedings 174, (1997)Google Scholar
9 Baumvol, I.J.R., Krug, C., Stedile, F.C., Green, M.L., Jacobsen, D.C., Eaglesham, D., Bernstein, J.D., Shao, J., Denholm, A.S., and Kellerman, P.L., Appl. Phys. Lett. 74, 806 (1999)10.1063/1.123374Google Scholar