Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:16:31.614Z Has data issue: false hasContentIssue false

Ultrasound propagation in disordered granular media

Published online by Cambridge University Press:  01 February 2011

Xiaoping Jia*
Affiliation:
Groupe de Physique des Solides, Université Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, FRANCE
Get access

Abstract

We have identified, according to the ratio of the wavelength to the grain size, two distinct types of pulsed ultrasound transmission through a dry bead packing under stress: one corresponds to coherent ballistic waves characterized by the effective medium description, the other to the waves scattered by the inhomogeneous stress field within the granular medium. Over long distances of transport, the multiply scattered waves exhibit a diffusive character. Also we investigate the dynamics of the granular medium during a compaction under cyclic loading-unloading. Both the macroscopic deformation and the microscopic rearrangement have been measured, via an ultrasonic correlation technique using the multiple acoustic scattering very sensitive to the change of the system configuration. It is found that as the packing fraction increases, there is a continuous evolution of the system in response to external loading, from an irreversible behavior towards more elastic one.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jaeger, H.M., Nagel, S.R., Behringer, R.P., Rev. Mod. Phys. 68, 1259 (1996);Google Scholar
Physics of Dry Granular Media, edited by Herrmann, H.J. et al (Kluwer, Dordrecht, 1998)Google Scholar
2. de Gennes, P.G., Rev. Mod. Phys. 71, S374 (1999);Google Scholar
Evesque, P., de Gennes, P.G., C. R. Acad. Sci. (Paris), Ser. II 326, 761 (1998)Google Scholar
3. Dantu, P., in Proceedings of the 4th International Conference on Soil Mechanics and Foundations Engineering (Butterworths, London, 1957);Google Scholar
Travers, T., Ammi, M., Bideau, D., Gervois, A., Messager, J.C. and Trodec, J.P., Europhys. Lett. 4, 329 (1987)Google Scholar
4. Howell, D., Behringer, R.P., Veje, C., Phys. Rev. Lett. 82, 5241 (1999)Google Scholar
5. Radjai, F., Jean, M., Moreau, J.J., Roux, S., Phys. Rev. Lett. 77, 274 (1996)Google Scholar
6. Cates, M.E., Wittmer, J.P., Bouchaud, J.P., Claudin, P., Phys. Rev. Lett. 81, 1841 (1998);Google Scholar
Bouchaud, J.P., Cates, M., Claudin, P., J. Phys. I (France) 5, 639 (1995)Google Scholar
7. Tkachenko, A.V., Witten, T., Phys. Rev. E 60, 687 (1999);Google Scholar
Edwards, S.F., Grinev, D.V., Phys. Rev. Lett. 82, 5397 (1999);Google Scholar
Coppersmith, S.N., Liu, C.H., Majumdar, S., Narayan, O., Witten, T.A. Phys. Rev. E 53, 4673 (1996);Google Scholar
8. Liu, C., Nagel, S.R., Phys. Rev. Lett. 68, 2301 (1992); Phys. Rev. B48, 15646 (1993)Google Scholar
9. Jia, X., Caroli, C., Velicky, B., Phys. Rev. Lett. 82, 1863 (1999)Google Scholar
10. Sheng, P., Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic Press, san Diego, 1995);Google Scholar
Alexander, S., Phys. Rep. 296, 66 (1998)Google Scholar
11. Page, J.H., Schriemer, H.P., Bailey, A.E., Weitz, D.A., Phys. Rev. E 52, 3106 (1995)Google Scholar
12. Jia, X. (unpublished)Google Scholar
13. Domenico, S.N., Geophysics 42, 1339 (1977)Google Scholar
14. Makse, H.A., Gland, N., Johnson, D.L., Schawartz, L.M., Phys. Rev. Lett. 83, 5070 (1999)Google Scholar
15. Winkler, K.W., Geophys. Res. Lett. 57, 1073 (1983);Google Scholar
Digby, P.J., J. Appl. Mech. 48, 803 (1981)Google Scholar
16. Goddard, J.D., Proc. R. Soc. London A430, 105 (1990);Google Scholar
Roux, S., Stauffer, D., Herrmann, H.J., J. Phys. 48, 341 (1987)Google Scholar
17. Nowak, E.R., Knight, J.B., Ben-Naim, E., Jaeger, H.M., Nagel, S.R., Phys. Rev. Lett. 57, 1971 (1998)Google Scholar