Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T06:24:18.544Z Has data issue: false hasContentIssue false

Ultrasonic Velocity Studies of Graphite and Its Intercalation Compounds

Published online by Cambridge University Press:  15 February 2011

D. M. Hwang*
Affiliation:
Department of Physics, University of Illinois at Chicago, Chicago, Illinois, USA
Get access

Abstract

The c-axis sound velocities and attenuations for HOPG, stage 3 and stage 4 SbCl5-graphite were determined by ultrasonic techniques in the temperature range between 4 and 325 *K. The temperature variation of C33 for HOPG agrees closely with the theoretical prediction based on the Lennard-Jones interlayer potential. In SbCl5-graphite, the longitudinal sound attenuation increases sharply and the transverse sound cannot propagate for temperatures above 200 °K, indicating a commensurate-to-incommensurate in-plane phase transition. The stage dependence of C33 at low temperatures indicates that the interlayer forces beyond the nearest layers can not be neglected.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Blakslee, O. L., Proctor, D. G., Seldin, E. J., Spence, G. B. and Weng, T., J. Appl. Phys. 41, 3373 (1970).CrossRefGoogle Scholar
2. Gauster, W. B., Phil. Mag. 25, 687 (1972).CrossRefGoogle Scholar
3. Green, J. F., Bolsaitis, P. and Spain, I. L., J. Phys. Chem. Solids 34, 1927 (1973).Google Scholar
4. Gauster, W. B., and Fritz, I. J., J. Appli. Phys. 45, 3309 (1974).Google Scholar
5. Kelly, B. T. and Duff, M. J., Carbon 8, 77 (1970).Google Scholar
6. Green, J. F. and Spain, I. L., J. Phys. Chem. Solids 34, 2177 (1973).Google Scholar
7. Green, J.F. and Spain, I.L., Phys. Rev. B 11, 3935 (1975);Google Scholar
Ayasse, J.B., Ayache, C., Jager, B., Bonjour, E. and Spain, I.L., Solid State Comm. 29, 659 (1979).CrossRefGoogle Scholar
8. Kelly, B. T., Carbon 12, 535 (1974).CrossRefGoogle Scholar
9. Ellenson, W. D., Semmingsen, D., Guerard, D., Onn, D. G. and Fischer, J. E., Mat. Sci. Eng. 31, 137 (1977).Google Scholar
10. Rossat-Mignod, J., Fruchart, D., Moran, M. J., Milliken, J. W. and Fischer, J. E., Synthetic Metals 2, 143 (1980).Google Scholar
11. Zabel, H. and Magerl, A., Phys. Rev. B 25, 2463 (1982).CrossRefGoogle Scholar
12. Axe, J.D., Majkrzak, C.F., Passell, L., Satija, S.K., Dresselhaus, G. and Mazurek, H., in Extended Abstract of the 15th Biennial Conference on Carbon (Pennsylvania State Univ., 1981), p. 52;Google Scholar
Dresselhaus, G., Al-Jishi, R., Axe, J.D., Majkrzak, C.F., Passell, L. and Satija, S.K., Solid State Commun. 40, 229 1981).Google Scholar
13. Wada, N., Phys. Rev. B 24, 1065 (1981).CrossRefGoogle Scholar
14. Hwang, D. M., O'Donnell, B. F. and Wu, A. Y., in Physics of Intercalation Compounds, ed. by Pietronero, L. and Tossatti, E. (Springer, Berlin, 1981), p. 193.CrossRefGoogle Scholar
15. Peterson, G. L., Chick, B. and Junker, W., Ultrasonic Symposium Proceedings, IEEE Cat. #75 CHO 994-45U (1975).Google Scholar
16. Hardcastle, S. E. and Zabel, H., J. de Physique C 6, 326 (1981).Google Scholar
17. Bailey, A. C. and Yates, B., J. Appl. Phys. 41, 5088 (1970).Google Scholar
18. Papadakis, E. P., J. Acoust. Soc. Amer. 42, 1046 (1967).CrossRefGoogle Scholar