Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T15:23:44.476Z Has data issue: false hasContentIssue false

Ultrashort Pulse Generation with Semiconductor Modelocked Lasers Using Saturable Absorbers Based on Intersubband Transitions in GaN/AlGaN Quantum Wells

Published online by Cambridge University Press:  26 February 2011

Faisal R. Ahmad
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, U.S.A.
Paul George
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, U.S.A.
Jahan Dawlaty
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, U.S.A.
Fahan Rana
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, U.S.A.
William J. Shaff
Affiliation:
Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, U.S.A.
Get access

Abstract

We present a novel scheme for generating high energy ultrashort pulses in modelocked semiconductor lasers using a fast saturable absorber based upon intersubband transitions (ISBT) in GaN/AlGaN superlattice. The fast electron relaxation time (∼100–300 fs) in this saturable absorber enables the generation of stable sub-100 fs pulses at the communication wavelength (1.55μm) with high pulse energies (5–10 pJ).

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kishino, K., Kikuchi, A., Kanazawa, H. and Tachibana, T., Appl. Phys. Lett. 81, 12341236 (2002).Google Scholar
2. Gmachl, C., Frolov, S.V., Ng, H. M., Chu, S. N. G. and Cho, A.Y., Elect. Lett. 37, 378380 (2001).Google Scholar
3. We, Bi-R., Lin, C-F., Laih, L-W., Shih, T-T., Electron. Lett. 36, 20932095 (2000).Google Scholar
4. Haus, H. A., J. Appl. Phys. 46, 30493058 (1975).Google Scholar
5. Haus, H. A., IEEE J. Quantum Electron. 11, 736746 (1975).Google Scholar
6. Kärtner, F. X., Aus der Au, J. and Keller, U., IEEE J. of Select. Topics. in Quantum Electron. 4, 159168 (1998).Google Scholar
7. Derickson, D. J, Helkey, R. J., Marr, A., Karin, J. R., Wasserbauer, J. G. and Bower, J. E., IEEE J. Quantum Electron. 28, 21862202 (1992).Google Scholar
8. Walpole, J. N, Donelly, J. P., Taylor, P. J., Missaggia, L. J., Harris, C. T., Bailey, R. J., Napoleone, A., Groves, S. H., Chinn, S. R., Huang, R. and Plant, J., IEEE Photonics Technology Letters, 14, 756758 (2002).Google Scholar
9. Rana, F., Ram, R. J., Phys. Rev. B 65, 125313 (2002).Google Scholar
10. Suzuki, N and Iizuka, N., Jpn. J. Appl. Phys. 37, L369 (1998).Google Scholar
11. Agrawal, G. P., Nonlinear Fiber Optics. New York: Academic, 1989, Ch.2 and 3.Google Scholar
12. Agrawal, G. P., IEEE J. Quantum Electron. 27, 18431849 (1991).Google Scholar
13. Paschotta, R., Keller, U., Appl. Phys. B. 73, 653662 (2001).Google Scholar