Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T02:37:34.288Z Has data issue: false hasContentIssue false

Ultrananocrystalline Diamond-Biomolecular Composites: Towards BioMEMS

Published online by Cambridge University Press:  15 February 2011

N. M. Haralampus Grynaviski
Affiliation:
Materials Science Division and the Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439.
O. Auciello
Affiliation:
Materials Science Division and the Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439. Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439.
J. A. Carlisle
Affiliation:
Materials Science Division and the Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439. Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439.
J. E. Gerbi
Affiliation:
Materials Science Division and the Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439.
D. M. Gruen
Affiliation:
Materials Science Division and the Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439. Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439.
J. F. Moore
Affiliation:
Materials Science Division and the Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439.
A. Zinovev
Affiliation:
Materials Science Division and the Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439.
M. A. Firestone
Affiliation:
Materials Science Division and the Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439. Center for Nanoscale Materials, Argonne National Laboratory, Argonne IL 60439.
Get access

Abstract

The surface functionalization of ultrananocrystalline (UNCD) thin films has been investigated to develop biocomposite materials for use as BioMicroElectroMechanical Systems (BioMEMS). Specifically, hydrophobic, hydrogen-terminated UNCD films have been synthesized using a microwave plasma chemical vapor deposition technique then surface functionalized using a two-step modification procedure. This procedure produces a mixed submonolayer comprised of chloro- and hydroxyl- terminated alkyl chains chemisorbed to the UNCD surface. This surface modification procedure serves to provide functional groups that will allow for the subsequent attachment of a wide variety of biological macromolecules (e.g., proteins, biomembranes) and the ability to tune the hydrophilic nature of the diamond. The resultant materials have been characterized using surface-sensitive spectroscopies (NEXAFS and XPS).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Spearing, S. M., Acta Mater. 48 (1), 179 (2000); J. W. Judy, Smart Mater. Struct. 10 (6), 1115 (2001).Google Scholar
[2] Shawgo, R. S., Grayson, A. C. R., Li, Y. W., and Cima, M. J., Curr. Opin. Solid State Mat. Sci. 6 (4), 329 (2002); T. Stieglitz and M. Gross, Sensors and Actuators B 83, 8 (2002); J. U. Meyer, Sens. Actuator A-Phys. 97-8, 1 (2002).Google Scholar
[3] Cagin, T., Che, J., Gardos, M. N., Fijany, A., and Goddard, W. A. III, Nanotechnology 10, 278 (1999); A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, Diam. Relat. Mat. 10 (11), 1952 (2001).Google Scholar
[4] Freitas, R. A. Jr, Nanomedicine. (Landes Bioscience, Georgetown, TX., 2003).Google Scholar
[5] Bigelow, L. K. and D'Evelyn, M. P., Surf. Sci. 500, 986 (2002).Google Scholar
[6] Thomson, L. A., Law, F. C., Rushton, N., and Franks, J., Biomaterials 12 (1), 37 (1991); H. J. Steffen, J. Schmidt, and A. Gonzalez-Elipe, Surf. Interface Anal. 29, 386 (2000).Google Scholar
[7] Gruen, D. M., Annu. Rev. Mater. Sci. 29, 211 (1999).Google Scholar
[8] Bent, S. F., Surf. Sci. 500 (1-3), 879 (2002); K. C. Popat, S. Sharma, R. W. Johnson, and T. A. Desai, Surface and Interface Analysis 35 (2), 205 (2003).Google Scholar
[9] Kuo, T. C., McCreery, R. L., and Swain, G. M., Electrochem. Solid State Lett. 2 (6), 288 (1999).Google Scholar
[10] Miller, J. B., Surf. Sci. 439 (1-3), 21 (1999).Google Scholar
[11] Strother, T., Knickerbocker, T., Russell, J. N., Butler, J. E., Smith, L. M., and Hamers, R. J., Langmuir 18 (4), 968 (2002).Google Scholar
[12] Yang, W. S., Auciello, O., Butler, J. E., Cai, W., Carlisle, J. A., Gerbi, J., Gruen, D. M., Knickerbocker, T., Lasseter, T. L., Russell, J. N., Smith, L. M., and Hamers, R. J., Nature Materials 2 (1), 63 (2003).Google Scholar
[13] Mackey, B. L., Russell, J. N. J., Crowell, J. E., Pehrsson, P. E., Thoms, B. D., and Butler, J. E., J. Phys. Chem. B 105, 3803 (2001); H. Notsu, I. Yagi, T. Tatsuma, D. A. Tryk, and A. Fujishima, J. Electroanal. Chem. 492 (1), 31 (2000).Google Scholar
[14] Notsu, H., Tatsuma, T., and Fujishima, A., J. Electroanal. Chem. 523 (1-2), 86 (2002).Google Scholar
[15] Birrell, J., Gerbi, J. E., Auciello, O., Gibson, J. M., Gruen, D. M., and Carlisle, J. A., J. Appl. Phys. 93 (10), in press (2003).Google Scholar
[16] Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D., Handbook of X-Ray Photoelectron Spectroscopy. (Perkin-Elemer Corp. Physics Electronics Division, Eden Prairie, MN, 1992).Google Scholar
[17] Birrell, J., Carlisle, J. A., Auciello, O., Gruen, D. M., and Gibson, J. M., Appl. Phys. Lett. 81 (12), 2235 (2002).Google Scholar
[18] Tay, B. K., Shi, X., Tan, H. S., and Chua, H. C., Surf. Interface Anal. 28, 231 (1999).Google Scholar