Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:41:31.079Z Has data issue: false hasContentIssue false

Ultra-Low Resistance Ni-Based Contacts to n-InP: the Dependence of Contact Resistivity on the Condition of the Metal-Semiconductor Interface

Published online by Cambridge University Press:  21 February 2011

Navid S. Fatemi
Affiliation:
Sverdrup Technology, Inc., Lewis Research Center Group, Brook Park, OH 44142
Victor G. Weizer
Affiliation:
NASA Lewis Research Center, Cleveland, OH 44135
Get access

Abstract

Near-theoretical-minimum values of specific contact resistivity, ρc (in the mid-to-low E-8 Ω-cm2 range) have been achieved for Ni-based contacts to moderately doped (2E18 cm−3) n-type InP. In each case these values are an order of magnitude lower than those previously achieved. These ultra-low resistivities are shown to result when the metallurgical interaction rate between the contact metal and the semiconductor is sufficiently reduced. Several methods of reducing the metal-InP reaction rate and thus achieving lowered resistivity values are demonstrated. We show, for instance, that the introduction of a thin (100Å) Au layer at the metal-InP interface retards metal-semiconductor intermixing during sintering and results in a ten-fold reduction in pc. Another method consists of ensuring the perfection of the near-surface InP lattice prior to and during contact deposition process. Use of this technique has enabled us to fabricate, for the first time, Ni-only contacts with pc values in the low E-8 Ω-cm2 range. We present an explanation for these observations that is based upon the magnitude of the In-to-P atomic ratio at the metal-InP interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bahir, G., Merz, J. L., Abelson, J. R., and Sigmon, T. W., J. Electron. Mat. 16, 257 (1987).Google Scholar
2 Del Alamo, J. A. and Mizutani, T., Solid-State Electron. 31, 1635 (1988).CrossRefGoogle Scholar
3 Fatemi, N. S. and Weizer, V. G., proc. Mat. Res. Soc. 260, 537 (1992)Google Scholar
4 Fatemi, N. S. and Weizer, V. G., J. Appl. Phys. 74, Dec.l (1993).Google Scholar
5 Fatemi, N. S. and Weizer, V. G., J. Appl. Phys. 73, 289 (1993).CrossRefGoogle Scholar
6 Weizer, V. G. and Fatemi, N. S., J. Appl. Phys. 69, 8253 (1991).Google Scholar
7 Williams, R. H., Montgomery, V., Varma, R. R., & McKinley, A., J. Phys. D 10, L253 (1977).Google Scholar
8 Montgomery, V. and Williams, R. H., J. Phys. C 15, 5887 (1982).Google Scholar
9 Dautremont-Smith, W. C., Barnes, P. A., and Stayt, J. W., J. Vac. Sci. Technol. B 2, 620 (1984).CrossRefGoogle Scholar
10 Fatemi, N. S. and Weizer, V. G., J. Electron. Mat. 20, 875 (1991).Google Scholar
11 Weizer, V. G. and Fatemi, N. S., Appl. Phys. Lett. 62, 2731 (1993).CrossRefGoogle Scholar
12 Fatemi, N. S. and Weizer, V. G., J. Appl, Phys. 73, 289 (1993).Google Scholar
13 Blakers, A. W., Green, M. A., and Szpitalak, T., IEEE Electron Dev. Lett. EDL–5, 246 (1984).Google Scholar
14 Nel, M. and Auret, F. D., J. Appl. Phys. 64, 2422 (1988).Google Scholar
15 Kleinhenz, R., Mooney, P. M., Schneider, C. P., and Paz, O., Proc. "13th Int. Conf. on Defects in semiconductors," Kimmerling, L. C. and Paresy, J., Eds., (Coronado, CA, 1984), p. 627.Google Scholar
16 Krawczyk, S. K. and Hollinger, G., Appl. Phys. Lett. 45, 870 (1984).CrossRefGoogle Scholar
17 Weizer, V. G. and Fatemi, N. S., J. Appl. Phys. 68, 2275 (1990).Google Scholar