Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T02:20:47.115Z Has data issue: false hasContentIssue false

Ultrahigh-pressure study on the magnetic state of iron hydride using an energy domain synchrotron radiation 57Fe Mössbauer spectrometer

Published online by Cambridge University Press:  01 February 2011

Takaya Mitsui
Affiliation:
[email protected], Japan Atomic Energy Agency, 1-1-1 Kouto Sayo-cho Sayo-gun, Japan
Naohisa Hirao
Affiliation:
[email protected], Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto Sayo-cho Sayo-gun, Japan
Get access

Abstract

Pressure induced magnetic phase transition of iron hydride was investigated with an in-situ Mössbauer spectrometer using synchrotron radiation (SR). The spectrometer is composed of a high resolution monochromator, an X-ray focusing device, a variable frequency nuclear monochromator and a diamond anvil cell. The optical system, advantages of the spectrometer and the observed high pressure magnetic phases of iron hydride are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Badding, J. V. Hemley, R. J. and Mao, H. K. Science 253, 421 (1991).Google Scholar
2 Hirao, N. Kondo, T. Ohtani, E. Takemura, K. and Kikegawa, T. Geophys. Res. Lett. 31, L06616 (2004).Google Scholar
3 Fukai, Y. Mori, K. and Shinomiya, H. J. Alloys Comp. 348, 105 (2003).Google Scholar
4 Antonov, V. E. Belash, I. T. and Ponyatovsky, E. G. Scripta Met. 16, 203 (1982).Google Scholar
5 Antonov, V. E. Belash, I. T. Ponyatovskii, E. G., Thiessen, V. G. and Shiryaev, V. I. Phys. Stat. Sol. (a) 65, K43 (1981).Google Scholar
6 Wordel, R. Wagner, F. E. Antonov, V. E. Ponyatovskii, E. G. Permogorov, A. Planchinda, A. and Makarov, E. F. Hyperfine Interact. 28, 1005 (1986).Google Scholar
7 Choe, I. Ingalls, R. Brown, J. M. Sato-Sorensen, Y. and Mills, R. Phys. Rev. B 44, 1 (1991).Google Scholar
8 Schneidera, G. Baier, M. Wordel, R. Wagner, F.E. Antonov, V.E. Ponyatovsky, E.G. Kopilovskii, Yu. and Makarov, E. J. Less-Common Met. 172–174, 333 (1991).Google Scholar
9 Mao, W. L. Sturhahn, W. Heinz, D. L. Mao, H. Shu, J. and Hemley, R. J. Geophys. Res. Lett. 31, L15618 (2004).Google Scholar
10 Taylor, R. D. Pasternak, M. P. and Jeanloz, R. J. Appl. Phys. 69, 6126 (1991).Google Scholar
11 Nasu, S. Sasaki, T. Kawakami, T. Tsutsui, T. and Endo, S. J. Phys.: Condens. Matter 14 (2002) 11167.Google Scholar
12 Elsässer, C., Zhu, Jing, Louie, S. G. , Meyer, B. Fähnle, M. and Chan, C. T. J. Phys. Condens. Matter 10, 5113 (1998).Google Scholar
13 Pronsato, M. E. Brizuela, G. and Juan, A. J. Phys. Chem. Solids 64, 593 (2003).Google Scholar
14 Mikhaylushkin, A. S. Skorodumova, N. V. Ahuja, R. and Johansson, B. AIP Conf. Proc. 837, 161 (2006).Google Scholar
15 Mitsui, T. Seto, M. Hirao, N. Ohishi, Y. and Kobayashi, Y. Jpn. J. Appl. Phys. 46, L382 (2007).Google Scholar
16 Mitsui, T. Hirao, N. Ohishi, Y. Masuda, R. Nakamura, Y. Enoki, H. Sakaki, K. and Seto, M. J. Synchrotron Radiat. 16, 723 (2009).Google Scholar
17 Smirnov, G. V. Zelepukhin, M. V. and Bürck, U. Van, JETP Lett. 43, 352 (1986).Google Scholar
18 Stoner, E. C. Proc. Royal Soc. London A 165, 372 (1938).Google Scholar
19 Heine, V. Phys. Rev. 153, 673 (1967).Google Scholar