Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:25:01.487Z Has data issue: false hasContentIssue false

Ultra-High Speed Solidification and Crystal Growth in Transiently Molten Semiconductor Layers

Published online by Cambridge University Press:  15 February 2011

A.G. Cullis*
Affiliation:
Royal Signals and Radar Establishment, Malvern, Worcs. WR14 3PS, England
Get access

Abstract

The use of Q-switched laser melting techniques to investigate new rapid solidification phenomena is described. It has been found that Si, Ge, GaP and GaAs can give rise to orientation dependent, kinetically-controlled defect generation processes during fast recrystallization from the melt. Indeed, these materials yield amorphous phases at sufficiently high solidification rates. Ultra-fast pulsed melting permits the study of the basic thermodynamic properties of amorphous solids. It is shown that amorphous Si melts to give a normal, low viscosity, undercooled liquid and that novel explosive crystal growth processes can occur in this low temperature regime.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cullis, A. G., Webber, H. C. and Bailey, P., J. Phys. E: Sci. Instrum. 12, 688 (1979).Google Scholar
2.Liu, P. L., Yen, R., Bloembergen, N. and Hodgson, R.T., Appl. Phys. Lett. 34, 864 (1979).Google Scholar
3.Tsu, R., Hodgson, R. T., Tan, T. Y. and Baglin, J. E., Phys. Rev. Lett. 42, 1356 (1979).Google Scholar
4.Cullis, A. G., Webber, H. C., Chew, N. G., Poate, J. M. and Baeri, P., Phys. Rev. Lett. 49, 219 (1982).Google Scholar
5.Galvin, G. J., Thompson, M. O., Mayer, J. W., Hammond, R. B., Paulter, N. and Peercy, P. S., Phys. Rev. Lett. 48, 33 (1982).Google Scholar
6.Thompson, M. O., this proceedings volume.Google Scholar
7.Cullis, A. G., Webber, H. C. and Chew, N. G., Appl. Phys. Lett. in the press (1983).Google Scholar
8.Spaepen, F. and Turnbull, D., in: Laser-Solid Interactions and Laser Processing - 1978, Ferris, S. D., Leamy, H. J. and Poate, J. M. eds. (Amer. Inst. Phys., Ney work, 1979) pp. 7383Google Scholar
9.Bagley, B. G. and Chen, H. S., in: Laser-Solid Interactions and Laser Processing - 1978, Ferris, S. D., Leamy, H. J. and Poate, J.M. eds. (Amer. Inst. Phys., New York, 1979) pp. 97101.Google Scholar
10.Baeri, P., Foti, G., Poate, J. M. and Cullis, A. G., Phys. Rev. Lett. 45, 2036 (1980).Google Scholar
11.Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. and Jacobson, D.C., Appl. Phys. Lett. in the press (1983).Google Scholar
12.Kokorowski, S. A., Olson, G. L., Roth, J. A. and Hess, L. D., Phys. Rev. Lett. 48, 498 (1982).Google Scholar
13.Cullis, A. G., Webber, H. C. and Chew, N. G., Appl. Phys. Lett. 40, 998 (1982).Google Scholar
14.Cullis, A. G., Webber, H. C. and Chew, N. G., Crystal Growth, J., in the press.Google Scholar
15.Cullis, A. G., Webber, H. C., Poate, J. M. and Chew, N. G., J. Microsc. 118, 41 (1980).Google Scholar
16.Baeri, P., Foti, G., Poate, J. M. and Cullis, A. G., in: Laser and Electron-Beam Solid Interactions and Materials Processing, Gibbons, J. F., Hess, L. D. and Sigmon, T. W. eds. (North Holland, New York, 1981) pp. 3944.Google Scholar
17.Gilmer, G. H. and Leamy, H. J., in: Laser and Electron Beam Processing of Materials, White, C. W. and Peercy, P. S. eds. (Academic Press, New York, 1983) pp. 227233.Google Scholar
18.Jackson, K. A., in: Proceedings of NATO Institute on Surface Modification and Alloying, Poate, J. M. and Foti, G. eds. (Plenum Press, New York, 1983).Google Scholar