Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:58:30.715Z Has data issue: false hasContentIssue false

Ultrafast-laser Modification of Thermoelectric Sb2Te3 Thin Films

Published online by Cambridge University Press:  02 August 2012

Yuwei Li
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109 Center for Solar and Thermal Energy Conversion, University of Michigan, Ann Arbor, MI 48109
Vladimir A. Stoica
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109 Center for Solar and Thermal Energy Conversion, University of Michigan, Ann Arbor, MI 48109
Lynn Endicott
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109
Guoyu Wang
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109 Center for Solar and Thermal Energy Conversion, University of Michigan, Ann Arbor, MI 48109
Huarui Sun
Affiliation:
Center for Solar and Thermal Energy Conversion, University of Michigan, Ann Arbor, MI 48109 Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
Kevin P. Pipe
Affiliation:
Center for Solar and Thermal Energy Conversion, University of Michigan, Ann Arbor, MI 48109 Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
Ctirad Uher
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109 Center for Solar and Thermal Energy Conversion, University of Michigan, Ann Arbor, MI 48109 Applied Physics Program, University of Michigan, Ann Arbor, MI 48109
Roy Clarke
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, MI 48109 Center for Solar and Thermal Energy Conversion, University of Michigan, Ann Arbor, MI 48109 Applied Physics Program, University of Michigan, Ann Arbor, MI 48109
Get access

Abstract

We have modified Sb2Te3 thin film thermoelectric materials by scanning a femtosecond laser across the film surface to create track-like nanostructures. These nanotracks have widths of 50-80 nm and a periodicity of ∼ 130 nm. We show that the nanotrack morphology is highly dependent on laser fluence and scan speed. Moreover, we performed transient thermoreflectance measurements on a laser-irradiated film and found a thermal conductivity reduction of 4.5% in the nanostructured regions compared to that of the unmodified regions. These results suggest the potential use of femtosecond pulsed lasers to create nanostructured thermoelectric materials with improved performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Snyder, G. J. and Toberer, E. S., Nature Mater. 7, 105 (2008)10.1038/nmat2090Google Scholar
2. Zhang, H., Liu, C., Qi, X., Dai, X., Fang, Z., and Zhang, S., Nature Phys. 5, 438 (2009)10.1038/nphys1270Google Scholar
3. Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., and Takao, M., J. Appl. Phys. 69, 2849 (1991)10.1063/1.348620Google Scholar
4. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993)10.1103/PhysRevB.47.12727Google Scholar
5. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 16631 (1993)10.1103/PhysRevB.47.16631Google Scholar
6. Borowiec, A. and Haugen, H. K., Appl. Phys. Lett. 82, 4462 (2003)10.1063/1.1586457Google Scholar
7. Yasumaru, N., Miyazaki, K., and Kiuchi, J., Appl. Phys. A 81, 933 (2005)10.1007/s00339-005-3218-0Google Scholar
8. Wang, C., Huo, H., Johnson, M., Shen, M., and Mazur, E., Nanotechnology 21, 075304 (2010)10.1088/0957-4484/21/7/075304Google Scholar
9. Li, Y., Stoica, V. A., Endicott, L., Wang, G., Sun, H., Pipe, K. P., Uher, C., and Clarke, R., Appl. Phys. Lett. 99, 121903 (2011)10.1063/1.3634014Google Scholar