Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T13:13:22.119Z Has data issue: false hasContentIssue false

Ultrafast X-ray Lasers Illuminate Airborne Nanoparticle Morphology

Published online by Cambridge University Press:  13 September 2011

Michael J. Bogan*
Affiliation:
PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
Get access

Abstract

The world’s first hard x-ray FEL (XFEL), the Linac Coherent Light Source (LCLS) is operational, steadily producing mJ energy, <75 fs pulses of 1.5 Å x-rays (1012 photons per pulse), a billion times more intensity than any other X-ray source. XFELs have stimulated the shift from the use of x-rays to probe periodic structures, such as crystals, to imaging non-periodic structures using ultrabright x-ray pulses shorter than the time for required for the onset of damage. The international community has embraced the potential as additional XFELs are currently being constructed in Japan, Italy and Germany with many more already planned or in construction elsewhere. Here the recent efforts to extend x-ray microscopy to the nanoscale for airborne particles using diffract-and-destroy methods are reviewed. Projecting current experimental results to future facilities suggests that gains of more than 104 in data acquisition rates are possible by 2020. This projection emphasizes the need for the development of fast x-ray detectors, infrastructure investments to handle the rapid data rate and storage requirements, as well as the appropriate training of scientists to handle data interpretation. Further improvements in particle delivery methods are also necessary, in particular to reduce sample consumption and to provide orthogonal data channels for each individual particle imaged. The projected growth of single particle CXDI data rates show great promise for the field. However, to achieve the resolution required to solve many scientific problems tractable with single-shot imaging, improvements in the absolute number of photons per pulse in a given area are still necessary.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moffet, R.C. & Prather, K. A. In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proceedings of the National Academy of Sciences 106, 1187211877, doi:10.1073/pnas.0900040106 (2009).Google Scholar
2. Zhang, R. et al. . Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proceedings of the National Academy of Sciences of the United States of America 105, 1029110296 (2008).Google Scholar
3. Jacobson, M. Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695697 (2001).Google Scholar
4. Huldt, G., Szoke, A. & Hajdu, J. Diffraction imaging of single particles and biomolecules. Journal of Structural Biology 144, 219227 (2003).Google Scholar
5. Seibert, M.M. Ekeberg, T., Maia, F., Svenda, M., Andreasson, J., Jonsson, O., Odic, D., Iwan, B., Rocker, A., Westphal, D., Deponte, D., Barty, A., Schulz, J., Gumprecht, L., Coppola, N., Aquila, A., Menging, L., White, T., Martin, A., Caleman, C., Stern, S., Abergel, C.C., Seltzer, V., Claverie, J.M., Bostedt, C., Bozek, J.D., Boutet, S., Miahnahri, A.A., Messerschmidt, M., Krzywinski, J., Williams, G., Hodgson, K.O., Bogan, M.J., Hampton, C.Y., Sierra, R.G., Starodub, D., Andersson, I., Bajt, S., Barthelmess, M., Spence, J.C.H., Fromme, P., Weierstall, U., Kirian, R., Hunter, M., Doak, R.B., Marchesini, S., Hau-Riege, S.P., Frank, M., Shoeman, R.L., Lomb, L., Epp, S.W., Hartman, R.L., Rolles, D., Rudenko, A., Schmidt, C., Foucar, L., Kimmel, N., Holl, P., Rudek, B., Erk, B., Homke, A., Reich, C., Pietschner, D., Weidenspointner, G., Struder, L., Hauser, G., Gorke, H., Ullrich, B., Schlichting, I., Herrmann, S., Schaller, G., Schopper, F., Soltau, H., Kuhnel, K.U., Andritschke, R., Schroter, C.D., Krasniqi, F., Bott, M., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B., Chapman, H.N. and Hajdu, J. Single Mimivirus particles intercepted and imaged with an X-ray laser Nature 470, 7881 (2011).Google Scholar
6. Loh, N.T.D.; Bogan, M.J., Elser, V., Barty, A., Boutet, S., Bajt, S., Hajdu, J., Ekeberg, T., Maia, F.R.N.C., Schulz, J., Seibert, M.M., Iwan, B., Timneanu, N., Marchesini, S., Schlichting, I., Shoeman, R.L., Lomb, L., Frank, M., Liang, M., and Chapman, H.N. Cryptotomography: Reconstructing 3D fourier intensities from randomly oriented singleshot diffraction patterns. Physical Review Letters 104, 225501 (2010).Google Scholar
7. Bogan, M.J., Starodub, D., Hampton, C.Y. & Sierra, R. G. Single particle coherent diffractive imaging with a soft X-ray free electron laser: Towards soot aerosol morphology Journal of Physics B: Atomic, Molecular and Optical Physics 43, 194013 (2010).Google Scholar
8. Bogan, M.J. Boutet, S., Chapman, H., Marchesini, S., Barty, A., Benner, W.H., Rohner, U., et al. . Aerosol imaging with a soft x-ray free electron laser. Aerosol Science and Technology 44, 16 (2010).Google Scholar
9. Bogan, M.J.; Boutet, S., Barty, A., Benner, W.H., Frank, M., Lomb, L., Shoeman, R., Starodub, D., Seibert, M.M., Hau-Riege, S.P., Woods, B., Decorwin-Martin, P., Bajt, S., Schulz, J., Rohner, U., Iwan, B., Timneanu, N., Marchesini, S., Schlichting, I., Hajdu, J., and Chapman, H.N.. Single-shot femtosecond X-ray diffraction from ellipsoidal nanoparticles in random orientations. Physical Review Special Topics - Accelerators and Beams 13, 094791 (2010).Google Scholar
10. Bogan, M.J.; Benner, W.H.; Boutet, S.; Rohner, U.; Frank, M.; Barty, A; Seibert, M.M.; Maia, F; Marchesini, S; Bajt, S.; Woods, B; Riot, V; Hau-Riege, S. P; Svenda, M; Marklund, E; Spiller, E; Hajdu, J.; Chapman, H. N. Single particle X-ray diffractive imaging. Nano Letters 8, 310316 (2008).Google Scholar
11. Chapman, H. N. Hau-Riege, S.; Bogan, M.; Bajt, S.; Barty, A.; Boutet, S.; Marchesini, S.; Frank, M.; Woods, B.W.; Benner, W.H.; London, R.A.; Rohner, U.; Szoke, A.; Spiller, E.; Moller, T.; Bostedt, C.; Shapiro, D.; Kuhlmann, M.; Treusch, R.; Plonjes, E.; Burmeister, F.; Bergh, M.; Caleman, C.; Huldt, G.; Seibert, M.M.; Hajdu, J. Femtosecond time-delay X-ray holography. Nature 448, 676679 (2007).Google Scholar
12. Spence, J.C. & Hawkes, P. W. Diffract-and-destroy: can X-ray lasers “solve” the radiation damage problem? Ultramicroscopy 108, 15021503 (2008).Google Scholar
13. Fienup, J. R. A phase retreival algorithms - a comparison. Applied Optics 21, 27582769 1982).Google Scholar
14. Miao, J., Chapman, H.N., Kirz, J., Sayre, D. & Hodgson, K. O. Taking x-ray diffraction to the limit: Macromolecular Structures from Femtosecond X-Ray Pulses and Diffraction Microscopy of Cells with Synchrotron Radiation. Annual Review of Biophysics and Biomolecular Structure 33, 157176, (2004).Google Scholar
15. Marchesini, S.; He, H., Chapma, H.N., Hau-Riege, S.P., Noy, A., Howells, M.R., Weierstall, U., Spence, J.C.H., X-ray image reconstruction from a diffraction pattern alone. Physical Review B 68, 140101(R) (2003).Google Scholar
16. Marchesini, S. Ab initio compressive phase retrieval. arXiv:0809.2006v1 (2008).Google Scholar