Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T02:12:56.754Z Has data issue: false hasContentIssue false

Ultrafast Laser Processing for Lab-on-a-Chip Device Manufacture

Published online by Cambridge University Press:  01 February 2011

Koji Sugioka
Affiliation:
RIKEN —The Institute of Physical and Chemical Research Wako, Saitama 351–0198, Japan
Ya Cheng
Affiliation:
RIKEN —The Institute of Physical and Chemical Research Wako, Saitama 351–0198, Japan
Katsumi Midorikawa
Affiliation:
RIKEN —The Institute of Physical and Chemical Research Wako, Saitama 351–0198, Japan
Get access

Abstract

3D microstructuring of photosensitive glass is demonstrated by femtosecond (fs) laser for lab-on-a-chip manufacture. True 3D hollow microstructures embedded in the glass are fabricated by the fs laser direct write followed by heat treatment and successive wet etching. A variety of microcomponents for a lab-on-a-chip device like a microfluidics, a microvalve, a microoptics, a microlaser, etc. are fabricated by using this technique. The fs laser direct write process is also applied for selective metallization of internal walls of the hollow microstructures embedded in the glass for electric control of movement of the micromechanical components in the lab-on-a-chip device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sato, K., Tokeshi, M., Kitamori, T., and Sawada, T., Anal. Sci. 15, 641 (1999).Google Scholar
2. Scaffer, C. B., Brodeur, A., Garcia, J. F., and Mazur, E., Opt. Lett. 26, 93 (2001).Google Scholar
3. Yamada, K., Watanabe, W., Toma, T., Itoh, K., and Nishii, J., Opt. Lett. 26, 19 (2001).Google Scholar
4. Marcinkevicius, A., Juodkazis, S., Watanabe, M., Miwa, M., Matsuo, S., and Misawa, H., Opt. Lett. 26, 277 (2001).Google Scholar
5. Stookey, S. D., Ind. Eng. Chem. 45, 115 (1953).Google Scholar
7. Hansen, W.W., Janson, S. W., Helvajian, H., Proc. SPIE 2991, 104 (1997).Google Scholar
8. Fuqua, P. D., Janson, S. W., Hansen, W. W., and Helvajian, , Proc. SPIE 3618, 213 (1999).Google Scholar
9. Fuqua, P. D., Taylor, D. P., Helvajian, H., Hansen, W. W., Abraham, M. H., Matr. Res. Soc. Symp. Proc. 624, 79 (2000).Google Scholar
10. Helvajian, H., Fuqua, P. D., Hansen, W. W., and Janson, S., Proc. SPIE 4088, 319 (2000).Google Scholar
11. Masuda, M., Sugioka, K., Cheng, Y., Aoki, N., Kawachi, M., Shihoyama, K., Toyoda, K., Helvajian, H., and Midorikawa, K., Appl. Phys. A76, 857 (2003).Google Scholar
12. Cheng, Y., Sugioka, K., Midorikawa, K., Masuda, M., Toyoda, K., Kawachi, M., and Shihoyama, K., Opt. Lett. 28, 55 (2003).Google Scholar
13. Cheng, Y., Sugioka, K., Midorikawa, K., Masuda, M., Toyoda, K., Kawachi, M., and Shihoyama, K., Opt. Lett. 28, 1144 (2003).Google Scholar
14. Masuda, M., Sugioka, K., Cheng, Y., Hongo, T., Shihoyama, K., Toyoda, K., Takai, H., Miyamoto, I, and Midorikawa, K., Appl. Phys. A (in press).Google Scholar
15. Takase, F., Sugioka, K., Cheng, Y., Talkai, H., and Midorikawa, K., to be published.Google Scholar
16. Burns, M. A., Johnson, B. N., Brahmasandra, S. N., Handique, K., Webster, J. R., Krishnan, M., Sammarco, T. S., Man, P. M., Jones, D., Heldsinger, D., Mastrangelo, C. H., and Burke, D. T., Science 282, 484 (1998).Google Scholar
17. Poon, A. W., Courvoisier, F., and Chang, R. K., Opt. Lett. 26, 632 (2001).Google Scholar
18. Moon, H. J., Chough, Y. T., and An, K., Phys. Rev. Lett. 85, 3161 (2000).Google Scholar
19. Hongo, T., Sugioka, K., Takai, H., and Midorikawa, K., to be published.Google Scholar