Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:05:13.743Z Has data issue: false hasContentIssue false

Ultra-fast High Resolution Microscopy: Options for Pump-probe Methods

Published online by Cambridge University Press:  01 February 2011

Archie Howie*
Affiliation:
[email protected], University of Cambridge, Physics, J J Thompson Avenue, Cambridge, CB3 0HE, United Kingdom
Get access

Abstract

Recent applications of scanned probe microscopy are defined often going hand in hand with improved spectroscopy. These methods can provide information about dynamic response extending down towards the femotsecond time scale for resettable, repeatable phenomena and may thus help to fill the gap in the microscopist's coverage of material behavior. Although the use of photon pulses is best developed, ultra-short electron pulses are now available. Various options are therefore to hand in either transmission electron microscopy or scanning transmission electron microscopy operation for combining the spatial resolution of electrons with the spectral selectivity and precision of photons. With purely photon pump-probe operation, good spatial resolution can perhaps be obtained using the tip field-enhancement effect in scanning probe microscopy (SPM) and has also recently been impressively demonstrated in two-photon photo-electron microscopy (PEEM) operation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Howie, A., Microscopy and Microanalysis, 10, 28 (2004).10.1017/S1431927604040280Google Scholar
2. Goodwin, A. L, Tucker, M. G, Dove, M. T and Keen, D. A, Phys. Rev. Lett., 93, 075502.10.1103/PhysRevLett.93.075502Google Scholar
3. Yamamoto, N., Araya, K. and Abajo, F. J Garcia de, Phys. Rev., B64, 205419 (2002).Google Scholar
4. Nelayah, J. et al. , Nature Physics, 3, 348 (2007).10.1038/nphys575Google Scholar
5. Poncharal, P., Wang, Z. L, Ugarte, D. and Heer, W. A. de, Science, 283, 1513 (1999).10.1126/science.283.5407.1513Google Scholar
6. Wu, S. W, Ogawa, N. and Ho, W., Science, 312, 1362 (2006).Google Scholar
7. Hayazawa, N., Inouye, Y. and Kawata, S., J. Microsc., 194, 472 (1999).10.1046/j.1365-2818.1999.00563.xGoogle Scholar
8. Hamann, H. F, Kuno, M., Gallagher, A. and Nesbitt, D. J, J. Chem. Phys., 114, 8596 (2001)10.1063/1.1365931Google Scholar
9. Watanabe, H., Ishida, Y., Hayazawa, N., Inouye, Y. and Kawata, S., Phys. Rev., B69, 155418 (2004).10.1103/PhysRevB.69.155418Google Scholar
10. Balk, L. J, Davies, D. G and Kultscher, N., Phys. Stat. Sol., A82, 23 (1984).10.1002/pssa.2210820103Google Scholar
11. Nonnemacher, N., O'Boyle, M. P. and Wickramasinghe, H. K, Appl. Phys. Lett., 58, 2921 (1993)10.1063/1.105227Google Scholar
12. Rugar, D., Budakian, R., Mamin, H. J and Chui, B. W, Nature, 430, 329 (2004).10.1038/nature02658Google Scholar
13. Hillenbrand, R., Taubner, T. and Kellmann, F., Nature, 418, 159 (2002).10.1038/nature00899Google Scholar
14. Ichimura, T., Hazakawa, N., Hashimoto, M., Inouye, Y. and Kawata, S., Appl. Phys. Lett., 84, 1768, (2004).10.1063/1.1647277Google Scholar
15. Cundiff, S.T. and Ye, J., Rev. Mod. Phys., 75, 325 (2003).10.1103/RevModPhys.75.325Google Scholar
16. Cavalieri, A. et al. , Nature, 449, 1029 (2007).10.1038/nature06229Google Scholar
17. Poulin, P. R and Nelson, K. A, Science, 313, 1756 (2006).10.1126/science.1127826Google Scholar
18. Spence, J. C. H. and Howells, M. R, Ultramicroscopy, 93, 213 (2002).10.1016/S0304-3991(02)00278-4Google Scholar
19. Kleinschmidt, H. and Bostanjoglo, O., Rev. Sci. Instrum., 72, 3898 (2001).10.1063/1.1405782Google Scholar
20. King, W. E et al. , J. Appl. Phys., 97, 111101 (2005).10.1063/1.1927699Google Scholar
21. Hommelhoff, P., Sortais, Y., Aghajani-Talesh, A. and Kasevich, M. A, Phys. Rev. Lett., 96, 077401 (2006).Google Scholar
22. Spence, J. (private communication).Google Scholar
23. Marchesini, S., Rev. Sci. Instrum., 78, 011301 (2007).10.1063/1.2403783Google Scholar
24. Faulkner, H. M. L. and Rodenburg, J. M, Phys. Rev. Lett., 93, 023903 (2004).10.1103/PhysRevLett.93.023903Google Scholar
25. Cao, J., Hao, Z., Park, H., Tao, C., Kau, D. and Blaszyk, L., Appl. Phys. Lett., 83, 1044 (2003).Google Scholar
26. Siwick, B. J, Dwyer, J. R, Jordan, R. E and Miller, R. J. D., Science, 302, 1382 (2003).10.1126/science.1090052Google Scholar
27. Sandberg, R. L et al. , Phys. Rev. Lett., 99, 098103 (2007).10.1103/PhysRevLett.99.098103Google Scholar
28. Neutz, R. et al. , Nature, 406, 752 (2000).10.1038/35021099Google Scholar
29. Hubert, C., Levy, J., Cukauskas, E. and Kirchoefer, S. W, Phys. Rev. Lett., 85, 1998 (2000).10.1103/PhysRevLett.85.1998Google Scholar
30. Haenl, J. et al. , Nature, 430, 758 (2004)Google Scholar
31. Stoll, H. et al. , Appl. Phys. Letts., 84, 3328 (2004).Google Scholar
32. Shilo, D. and Zolotoyabko, E., Phys. Rev. Lett., 91, 115506 (3003).10.1103/PhysRevLett.91.115506Google Scholar
33. McDonald, J. P, Rees, J. A and Yasilove, S. M, J. Appl. Phys., 102, 063109 (2007).10.1063/1.2778740Google Scholar
34. Merano, M. et al. , Nature, 438, 479 (2005).10.1038/nature04298Google Scholar
35. Steeves, G. M and Freeman, M. R, Adv. in Imaging and Electron Phys., 125, 195 (2002).10.1016/S1076-5670(02)80017-9Google Scholar
36. Yarotski, D. A and Taylor, A. J, Topics in Appl. Phys., 92, 57 (2004).10.1007/978-3-540-44879-2_2Google Scholar
37. Khusnatdinov, N. N, Nagle, T. J, and Nunes, G., Appl. Phys. Lett., 77, 4434 (2000).10.1063/1.1336817Google Scholar
38. Lobastov, V. A, Srinivasan, R. and Zewail, A. H, Proc. N.A.S., 102, 7069 (2005).Google Scholar
39. Park, H. S, Baskin, J. S, Kwon, O. H and Zewail, A. H, Nanolett., 7, 2545 (2007).Google Scholar
40. Gedik, N., Yang, D-S., Logvenov, G., Bozovic, I. and Zewail, A. H, Science, 316, 425 (2007).Google Scholar
41. Ruan, C-Y., Murooka, Y., Ramani, R. K and Murdick, R. A, Nanolett., 7, 1290 (2007).10.1021/nl070269hGoogle Scholar
42. Baum, P. and Zewail, A. H, Proc. N.A.S., 103, 16105 (2006).Google Scholar
43. Boersch, H., Geiger, J. and Stickel, W., Phys. Rev. Lett., 17, 379 (1968).Google Scholar
44. Schilling, J. and Raether, H., J. Phys., C6, L358 (1973).Google Scholar
45. Schonhense, G. and Elmers, H. J, Surf. and Interface Anal., 38, 1578 (2006).10.1002/sia.2433Google Scholar
46. Chelaru, L. I, Hoegen, M. Horn-von, Thien, D. and Heringdorf, F.-J. Meyer zu, Phys. Rev., B73, 115416 (2006).10.1103/PhysRevB.73.115416Google Scholar
47. Heringdorf, F.-J. Meyer zu, Chelaru, L. I, Mollenbeck, S., Thien, D. and M. Horn-von Hoegen, Surf. Sci., 601, 4700 (2007).10.1016/j.susc.2007.05.052Google Scholar
48. Kubo, A., Pontius, N. and Petek, H., Nanolett., 7, 470 (2007).10.1021/nl0627846Google Scholar
49. Aizpurua, J., Howie, A. and Abajo, F. J. Garcia de, Phys. Rev., B60, 11149 (1999).10.1103/PhysRevB.60.11149Google Scholar