Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T23:02:03.519Z Has data issue: false hasContentIssue false

Ultrafast Excited-State Dynamics in a Fluoro-Aluminum Phthalocyanine Thin Film

Published online by Cambridge University Press:  15 February 2011

V. S. Williams
Affiliation:
Optical Sciences Center, University of Arizona, Tucson, AZ 85721 Department of Chemistry, University of Arizona, Tucson, AZ 85721
N. R. Armstrong
Affiliation:
Department of Chemistry, University of Arizona, Tucson, AZ 85721
S. Mazumdar
Affiliation:
Department of Physics, University of Arizona, Tucson, AZ 85721
Sandalphon
Affiliation:
Optical Sciences Center, University of Arizona, Tucson, AZ 85721
N. Peyghambarian
Affiliation:
Optical Sciences Center, University of Arizona, Tucson, AZ 85721
Get access

Abstract

Using femtosecond pump-probe spectroscopy, bleaching of the π-π* absorption Q-band, and photo-induced absorption on the high energy side of the Q-band, have been observed and time-resolved in a nearly-amorphous thin film of fluoro-aluminum phthalocyanine. Following excitation, the induced absorption signal develops as the absorption saturation signal diminishes, suggesting exciton decay into a subgap state. The different bimolecular decay dynamics observed for the absorption saturation (τeff ≈700 fs) and induced absorption (τeff ≈ 2 ps) signals support this conclusion. Possible origins of the subgap state are discussed. In addition, polarization-dependent spectral hole burning is observed at very early times. These results suggest the need for exploration of thin phthalocyanine films which are ordered in three dimensions over distances of at least 200–300 Å. Initial femtosecond results for epitaxially-grown chloro-indium phthalocyanine structures, which meet these criteria, are similar to those for the nearly-amorphous film, but indicate an additional polarization-dependent photo-induced absorption within the Q-band.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peyghambarian, N. and Koch, S.W., in Nonlinear Photonics, edited by Gibbs, H., Khitrova, G., and Peyghambarian, N. (Springer-Verlag, New York, 1990) pp. 3760; V.S. Williams, Z.Z. Ho, N. Peyghambarian, W.M. Gibbons, R.P. Grasso, M.K. O'Brien, P.J. Shannon, and S.T. Sun, Appl. Phys. Lett. 57, 2399 (1990).Google Scholar
2. Kalbeitzal, A., Neher, D., Bubeck, C., Sauer, T., Wegner, G., and Caseri, W., in Electronic Properties of Conjugated Polymers III, edited by Kuzmany, H., Mehring, N., and Roth, S., Springer Series in Solid State Sciences, Vol.91 (Springer-Verlag, Berlin, 1989) p. 220.Google Scholar
3. Ho, Z.Z. and Peyghambarian, N., Chem. Phys. Lett. 148, 107 (1988).CrossRefGoogle Scholar
4. Greene, B.I. and Millard, R.R., Phys. Rev. Lett. 55, 1331 (1985).CrossRefGoogle Scholar
5. Casstevens, M.K., Samoc, M., Pfleger, J., and Prasad, P.N., J. Chem. Phys. 92, 2019 (1990).CrossRefGoogle Scholar
6. Kasha, K., in Spectroscopy of the Excited State, edited by DiBartolo, B. (Plenum Press, New York, 1976) p. 337.CrossRefGoogle Scholar
7. Ho, Z.Z., Ju, C.Y., and Hetherington, W.M. III, J. Appl. Phys. 62, 716 (1987).CrossRefGoogle Scholar
8. Williams, V.S., Mazumdar, S., Armstrong, N.R., Ho, Z.Z., and Peyghambarian, N., J. Phys. Chem. in press (1992).Google Scholar
9. Williams, V.S., Sokoloff, J.P., Ho, Z.Z., Arbour, C., Armstrong, N.R., and Peyghambarian, N., Chem. Phys. Lett. in press (1992).Google Scholar
10. Aroca, R., Jennings, C., Loutfy, R.O., and Hor, A.-M., J. Phys. Chem. 90, 5255 (1986); C. Jennings, R. Aroca, A.-M. Hor, and R.O. Loutfy, Spectrochimica Acta 42A, 991 (1986); R. Aroca, C. Jennings, R.O. Loutfy, and A.-M. Hor, Spectrochimica Acta 43A, 725 (1987).CrossRefGoogle Scholar
11. MeVie, J., Sinclair, R.S., and Truscott, T.G., J. Chem. Soc. Faraday Trans. II 74, 1870 (1978); D. Markovitsi and I. Lécuyer, Chem. Phys. Lett. 149, 330 (1988).Google Scholar
12. Markovitsi, D., Tran-Thi, T.-H., Briois, V., Simon, J., and Ohta, K., J. Am. Chem. Soc. 110, 2001 (1988).CrossRefGoogle Scholar
13. Lever, A.B.P., Licoccia, S., Magnell, K., Minor, P.C., and Ramaswamy, B.S., ACS Symp. Ser. 201, 237 (1982).Google Scholar
14. Ferraudi, G., Oishi, S., and Muraldiharan, S., J. Phys. Chem. 88, 5261 (1984); D. Dolphin, B.R. James, A.J. Murray, and J.R. Thornback, Can. J. Chem. 58, 1125 (1980); J.M. Green and L.R. Faulkner, J. Am. Chem. Soc. 105, 2950 (1983).CrossRefGoogle Scholar
15. Popovic, Z.D., Chem. Phys. 86, 311 (1984).CrossRefGoogle Scholar
16. Muralidharan, S., Ferraudi, G., and Schmatz, K., Inorg. Chem. 21, 2961 (1982).CrossRefGoogle Scholar
17. Pankow, J., PhD thesis, University of Arizona, 1991.Google Scholar
18. Hudson, B.S., Kohler, B.E., and Schulten, K., in Excited States, Vol.6, edited by Lim, E.C. (Academic, New York, 1982); S. Ramasesha and Z.G. Soos, Synth. Metals 9, 283 (1984); P. Tavan and K. Schulten, J. Chem. Phys. 85, 6602 (1986); D. Baeriswyl, D.K. Campbell, and S. Mazumdar, in Conducting Polymers, edited by H. Kiess (Springer Verlag, Berlin, 1991).Google Scholar
19. Ohtani, H., Kobayashi, T., Ohno, T., Kato, S., Tanno, T., and Yamada, A., J. Phys. Chem. 118, 4431 (1984).CrossRefGoogle Scholar
20. Nebesny, K.W., Collins, G.E., Lee, P.A., Chau, L.-K., Danziger, J., Osborn, E., and Armstrong, N. R, Chem. Mater. 3, 829 (1991); G.E. Collins, K.W. Nebesny, C.D. England, L.-K. Chau, P.A. Lee, B.A. Parkinson, and N.R. Armstrong, J. Vac. Sci. Technol. in press, (1992).CrossRefGoogle Scholar
21. Williams, V.S., Sandalphon, , Armstrong, N.R., Mazumdar, S., and Peyghambarian, N., IQEC, in press (1992).Google Scholar
22. Sandalphon, , Williams, V.S., Armstrong, N.R., and Peyghambarian, N., Ultrafast Phenomena VIII, in press (1992).Google Scholar