Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:22:06.988Z Has data issue: false hasContentIssue false

Ultra Shallow Junction Formation by Cluster Ion Implantation

Published online by Cambridge University Press:  10 February 2011

Jiro Matsuo
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606, Japan
Takaaki Aoki
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606, Japan
Ken-ichi Goto
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Toshihiro Sugii
Affiliation:
Fujitsu Laboratories Ltd., 10-1 Morinosato-Wakamiya, Atsugi 243-01, Japan
Isao Yamada
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606, Japan
Get access

Abstract

Implantation of B cluster ions into Si using decaborane (B10H14) has been demonstrated. SIMS measurements show that the depth distribution of boron atoms implanted with a monomer ion is exactly matched by that of boron atoms implanted from decaborane ions, if the cluster ion has an order of magnitude larger acceleration energy. According to the Langmuir-Child equation, two orders of magnitude larger space-charge limited ion beam current is possible when decaborane ions are used. Implanted boron atoms from decaborane ions are electrically activated after annealing. Junction depth of the implanted layer with 3 keV decaborane ions is approximately 20nm after annealing at 900°C. Molecular dynamic caluculations show that implantation efficency of boron monomer ions and decaborane ions are the same. However, the number of displaced silicon atoms per implanted boron atom from a decaborane ion impact is 4 times larger than that by boron monomer impact so that a heavily damaged region is created near the impact zone by decaborane ion penetration.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamada, I. and Matsuo, J., Mat. Res. Soc. Symp. Proc., Vol.427, p.265, (1996).Google Scholar
2. Matsuo, J., Takeuchi, D., Kitani, A. and Yamada, I., Nucl. Instr. and Meth. B, Vol.112, p.89, (1996).Google Scholar
3. Matsuo, J., Takeuchi, D., Aoki, T. and Yamada, I., IEEE Proc. of the 11 th INTL Conf. on Ion Implantation Technology, Vol.1, Issue 1, p.768, (1996).Google Scholar
4. Goto, K., Matsuo, J., Sugi, T., Manakata, H., Yamada, I. and Hisatsugu, T., IEDM Tech. Dig., p.435, (1996).Google Scholar
5. Goto, K., Matsuo, J., Tada, Y., Tanaka, T., Momiyama, Y., Sugii, T. and Yamada, I., IEDM Tech. Dig., p.471, (1997).Google Scholar
6. Aoki, T., Matsuo, J., Insepov, Z. and Yamada, I., Nucl. Instr. and Meth. B, Vol.121, p.49, (1997).Google Scholar
7. Eaglesham, D.J.,Stolk, P.A., Gossmann, H.J. and Poate, J.M., Appl.Phys.Lett., Vol.65, p. 2305 (1994).Google Scholar
8. Stolk, P.A., Gossmann, H.J., Eaglesham, D.J. and Poate, J.M., Nucl. Instr. and Meth B, Vol.96, p.187, (1995).Google Scholar
9. Michel, A.E., Rausch, W., Ronsheim, P.A. and Kastl, R.H., Appl. Phys. Lett., Vol.50, p.416, (1987).Google Scholar
10. Dutton, R.W. and Plummer, J.D., Computer code SUPREM-IV developed at the integrated Circuit Laboratory, Stanford University.Google Scholar
11. Stillinger, F.H. and Weber, T.A., Phys. Rev. B, Vol.31, p.5652, (1985).Google Scholar
12. Ziegler, J.F., biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon Press, New York, 1985, pp. 321.Google Scholar
13. Aoki, T., Seki, T., Matsuo, J., Insepov, Z. and Yamada, I., J. Mat. Chem. and Phys. (in press).Google Scholar
14. Shulga, V.I. and Sigmond, P., Nucl. Instr. and Meth B, Vol.47, p.236, (1990).Google Scholar