Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:47:56.261Z Has data issue: false hasContentIssue false

Ultinite Mechanical Properties of Polymer Fibers a Theoretical Approach

Published online by Cambridge University Press:  26 February 2011

Yves Termonia
Affiliation:
Central Research and Development Department Experimental Station
Paul Smith
Affiliation:
E. I. du Pont de Nemours and Co., Inc. Wilmington, Delaware 19898
Get access

Abstract

A stochastic Monte-Carlo approach, based on the kinetic theory of fracture, has been used to study the axial maximum tensile strength of polymer fibers. The approach is entirely microscopic and the inhomogenous distribution of the external stress among atomic bonds near the chain ends is explicitly taken into account. Both primary and secondary bonds are assumed to break during fracture of the polymer fiber. The approach has been applied to perfectly oriented and ordered polyethylene and poly(p-phenylene-terephthalamide) fibers. The influence of the molecular weight, temperature ard strain rate on the axial tensile properties are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Termonia, Y., Meakin, P. and Smith, P., Macromolecules, 18, 2246 (1985); Y. Termonia, P. Meakin and P. Smith, Macromolecules, 19, 154 (1986)Google Scholar
2. Termonia, Y. and Smith, P., J. Mater. Sci., in pressGoogle Scholar
3. Kausch, H. H., Poljnjer Fracture, Springer-Verlag (Berlin) (1978)Google Scholar
4. Zhurkov, S. N. and Sanhirova, T. P., Dokl. Akad. Nauk. SSSR, 101, 237 (1955)Google Scholar
5. Dobrodumov, A. V. and El'yashevitch, A. M., Soy. Phys. Sol. State, 15, 1259 (1973)Google Scholar
6. Zhurkov, S. N., Vettegren, V. I., Korsukov, V. E., Novak, I.I., Proc. 2nd Int. Conf. on Fracture, Brighton, Chapman & Hall Ltd. London, p.545 (1969)Google Scholar
7. Cansfield, D. L. M., Ward, I. M., Woods, D. W., Buckley, A.,Pierce, J. M. and Wesley, J. L., Pol. Cormun., 24, 130 (1983)Google Scholar
8. See Ref. 3, Chapter 7Google Scholar
9. Capaccio, G., Gibson, A. G. and Vard, I. M., in “Ultra-gigh Modulus Polymers, Ciferri, A. and Ward, I. M., Eds., Applied Science Publ. (London) 1979, p. 1.Google Scholar
10. Perkins, W. G., Capiati, N. J. and Porter, R. S., Polym. Sci. Eng., 16, 200 (1976)CrossRefGoogle Scholar
11. Smith, P., Lemstra, P. J. and Pijpers, J. P. L., J. Pol.Sci., Pol. Phys. Ed., 20, 2229 (1982)Google Scholar
12. Savitskii, A. V., Gorshkova, I. A., Shmikk, G. N. and Frolova, I. L., Vysokomol. Soed., B25, 352 (1983)Google Scholar
13. Savitskii, A. V., Gorshkova, I. A., Frolova, I. L., Smikk, G.N. and loffe, A. F., Pol. Bull., 12, 195 (1984)Google Scholar
14. Smith, P. and I.emstra, P. J., J. Pol. Sci., Pol. Phys. Ed., 19, 1007 (1981)Google Scholar
15. Crist, B., Rafner, M. A., Brower, A. J. and Sabin, J. R., J. Appl. Phys., 50, 6047 (1979)Google Scholar
16. He, T., Polymer, 27, 253 (19860)Google Scholar
17. Zwijnenburg, A. and Pennings, A. J., J. Polym. Sci., Polymn. Lett. Ed., 14, 339 (1976)Google Scholar
18. 1. Ward, M., Mechanical Properties of Solid Polymers, 2nd Ed., John Wiley & Sons, (N. Y.), p. 270 (1983)Google Scholar
19. Schaefgen, J. R., Bair, T. I., Ballou, J. W., Kwolek, S. L.,Morgan, P. W., Panar, M. and Zitnnerman, J., in: Ultra-High Modulus Polymers, Ciferri, A. and Ward, I. M. Eds., Applied Science Publ. (London), 1979, p. 173 Google Scholar
20. DuPont Technical Information, Kevlar® Aramid, Bulletin K-5 September 1981 Google Scholar