No CrossRef data available.
Published online by Cambridge University Press: 26 January 2011
During a two-step sintering practice, important factors such as final grain sizes and residual pore status can be controlled through adjusting the first and second step sintering temperatures and durations. Moreover, the sintering temperatures (both the first and the second step) can be several hundred degrees lower than those in a traditional sintering process to obtain fully dense ceramics. Therefore, it is a potentially cost-effective preparation procedure for ceramics with fine grains. In this work, we successfully demonstrated the synthesis of aggregate-free sesquioxide nanometer-sized powders with a narrow size distribution through a modified chemical co-precipitation process. Subsequently, ytterbium-doped Lu2O3 ceramics of near full density were obtained through a two-step sintering process.