Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T08:55:07.549Z Has data issue: false hasContentIssue false

Two-step Defect Reduction of GaAs/Si Epitaxy by Selective Aspect Ratio Trapping

Published online by Cambridge University Press:  01 February 2011

Jizhong Li
Affiliation:
[email protected], Amberwave, R&D, 13 Garabedian Dr, Salem, NH, 03079, United States, 603-870-8675, 603-870-8608
J. Bai
Affiliation:
[email protected], Amberwave, R&D, 13 Garabedian Drive, Salem, NH, 03079, United States
C. Major
Affiliation:
[email protected], Amberwave, Ops, 13 Garabedian Drive, Salem, NH, 03079, United States
M. Carroll
Affiliation:
[email protected], Amberwave, R&D, 13 Garabedian Drive, Salem, NH, 03079, United States
A. Lochtefeld
Affiliation:
[email protected], Amberwave, R&D, 13 Garabedian Drive, Salem, NH, 03079, United States
Z. Shellenbarger
Affiliation:
[email protected], Sarnoff, Optoelectronics, 201 Washington Rd, Princeton, NJ, 08543, United States
Get access

Abstract

We report on the MOCVD growth of GaAs on patterned Si utilizing the Aspect Ratio Trapping (ART) method to reduce threading dislocations resulting from lattice mismatch. Defect-free GaAs was obtained from growth in sub-micron trenches formed in SiO2 on Si (001) substrates. Material quality has been characterized by cross-sectional and plan-view TEM and XRD. It was found that when growing GaAs above the trenched region, coalescence-induced threading dislocations (TDs) and planar defects were introduced at the coalescence junction interfaces. These defects were found to be unrelated to the misfit defects (MDs) on GaAs/Si interface that originated during initial epitaxial growth. Causes of coalescence defect formation were experimentally investigated by employing a two-step defect reduction scheme. It is concluded that by further optimizing growth conditions during coalesce layer growth, low defect-density GaAs material can be obtained on Si substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kazi, Z. I., Thilakan, P., Egawa, T., Umeno, M. and Jimbo, T., Jpn. J. Appl. Phys. 40, 4903 (2001).10.1143/JJAP.40.4903Google Scholar
2. Chol, Hong K., Mattia, John P., Turner, Grorge W. and Tsaur, Bor-Yeu, IEE Electron Lett. 9, 512 (1998).Google Scholar
3. Chediak, Alex, Scott, Karen and Zhang, Peng, TICS4, MSE225, April 12, 2002Google Scholar
4. Fang, Alexander W., Jones, Richard, Park, Hyundai, Cohen, Oded, Raday, Omri, Paniccia, Mario J. and Bowers, John E., OPTICS EXPRESS, 15, 2315 (2007).Google Scholar
5. Neumanna, S., Bakinb, A., Vellingc, P., Prosta, W., Wehmannb, H.-H., Schlachetzkib, A., and Tegudea, F.- J., J. Crystal Growth, 248, 380 (2003).10.1016/S0022-0248(02)01852-3Google Scholar
6. Chilukuri, Kamesh, Mori, Michael J, Dohrman, Carl L and Fitzgerald, Eugene A, Semicond. Sci. Technol, 22, 29 (2007).10.1088/0268-1242/22/2/006Google Scholar
7. Yamaguchi, M., Yamamoto, A., Tachikawa, M., Itoh, Y. and Sugo, M., Appl. Phys. Lett. 53 2293 (1998).10.1063/1.100257Google Scholar
8. Groenert, M. E., Leitz, C. W., Pitera, A. J. and Yang, V., Appl. Phys. Lett. 93 362 (2003).Google Scholar
9. Hayafuji, N., Miyashita, M., Nishimura, T., Kadoiwa, K., Kumabe, H. and Murotani, T., Jpn. J. Appl. Phys., 29, 2371 (1990).Google Scholar
10. Ghosh, R. N., Griffing, B. and Ballantyne, J. M., Appl. Phys. Lett. 48, 370 (1986).10.1063/1.96555Google Scholar
11. Soga, T., Sakai, S., Umeno, M. and Hattori, S., Jpn. J. Appl. Phys. 26, 252 (1987).10.1143/JJAP.26.252Google Scholar
12. Park, J.-S., Bai, J., Curtin, M., Adekore, B., Carroll, M. and Lochtefeld, A., Appl. Phys. Lett. 90, 052113 (2007).10.1063/1.2435603Google Scholar
13. Li, J. Z., Bai, J., Park, J.-S., Adekore, B., Fox, K., Carroll, M., Lochtefeld, A. and Shellenbarger, Z., 91, 021114 (2007).Google Scholar
14. Kamins, T. I., Vook, D. W., Yu, P. K., and Turner, J. E., Appl. Phys. Lett. 61, 669 (1992).Google Scholar
15. Fitzgerald, E. A. and Chand, Naresh, J. Electronic Materials, 20, 8399 (1991).Google Scholar
16. Chang, Y.S., Naritsuka, S., Nishinaga, T., J. Crystal Growth, 174, 630 (1997).10.1016/S0022-0248(97)00067-5Google Scholar