Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T12:38:47.135Z Has data issue: false hasContentIssue false

Two Peak Effect in GMR: A Chemical Effect?

Published online by Cambridge University Press:  10 February 2011

B. Vertruyen
Affiliation:
SUPRAS, LCIS, Institute of Chemistry B6, University of Liège, B-4000 Liège, Belgium
A. Rulmont
Affiliation:
SUPRAS, LCIS, Institute of Chemistry B6, University of Liège, B-4000 Liège, Belgium
S. Dorbolo
Affiliation:
SUPRAS, Institute of Physics B5, University of Liège, B-4000 Liège, Belgium
H. Bougrine
Affiliation:
SUPRAS, Montefiore Electricity Institute B28, University of Liège, B-4000 Liège, Belgium
Ph. Vanderbemden
Affiliation:
SUPRAS, Montefiore Electricity Institute B28, University of Liège, B-4000 Liège, Belgium
M. Ausloos
Affiliation:
SUPRAS, Institute of Physics B5, University of Liège, B-4000 Liège, Belgium
R. Cloots
Affiliation:
SUPRAS, LCIS, Institute of Chemistry B6, University of Liège, B-4000 Liège, Belgium
Get access

Abstract

We show that the synthesis conditions have a dramatic influence on the resistivity behavior of calcium and sodium doped LaMnO3. Several samples prepared by lowtemperature techniques exhibit a double-peaked curve of resistance versus temperature. The model of spin-polarized intergranular tunneling provides a good approach to discuss our experimental results. Grain size and crystallinity are proved to be essential parameters, which are strongly influenced by the preparation process (e.g. the precursors nature and the thermal treatment).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blasco, J., Garcia, J., Teresa, J. M. De, Ibarra, M. R., Algarabel, P. and Marquina, C., J. Phys.: Condens. Matter 8, 7427 (1996))Google Scholar
2. Snyder, G. J., Hiskes, R., DiCarolis, S., Beasley, M. R. and Geballe, T. H., Phys.Rev.B 53(21), 14434 (1996)Google Scholar
3. Sergeenkov, S., Ausloos, M., Bougrine, H., Rulmont, A. and Cloots, R., JETP Lett. 70(7), 481 (1999)Google Scholar
4. Zhang, N., Wang, F., Zhong, W. and Ding, W., J. Phys.: Condens. Matter 11, 2625 (1999))Google Scholar
5. Hwang, H. Y., Cheong, S. W., Ong, N. P. and Batlogg, B., Phys. Rev. Lett. 77(10), 2041 (1996)Google Scholar
6. Ramirez, A. P., Cheong, S. W. and Schiffer, P., J. Appl. Phys. 81(8), 5337 (1997)Google Scholar
7. Mahesh, R., Mahendiran, R., Raychaudhuri, A. K. and Rao, C. N. R., Appl. Phys. Lett. 68(16), 2291 (1996)Google Scholar
8. Hossain, A. K. M. A., Cohen, L. F., Kodenkandeth, T., MacManus-Driscoll, J. and Alford, N. McN., J. Magn. Magn. Mater. 195, 31 (1999))Google Scholar
9. Zhang, N., Ding, W., Zhong, W., Xing, D. and Du, Y., Phys.Rev.B 56(13), 8138 (1997)Google Scholar
10. Pierre, J., Robaut, F., Misat, S., Strobel, P., Nossov, A., Ustinov, V. and Vassiliev, V., Physica B 225, 214 (1996))Google Scholar
11. Rao, C. N. R., Manesh, R., Raychaudhuri, A. K. and Mahendiran, R., J. Phys. Chem. Solids 59(4), 487 (1998)Google Scholar
12. Chakraborty, A., Devi, P. S. and Maiti, H. S., J. Mater. Res. 10(4), 918 (1995)Google Scholar