Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:52:44.982Z Has data issue: false hasContentIssue false

TWO DEFECT-RELATED PHOTOLUMINESCENCE SPECTRA AND CROSS-SECTION TEM OF MBE GROWN CdTe ON (100) InSb

Published online by Cambridge University Press:  28 February 2011

Z.C. FENG
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
A. MASCARENHAS
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
W.J. CHOYKE
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 Westinghouse R&D Center, Pittsburgh, PA 15235
R.F.C. FARROW
Affiliation:
Westinghouse R&D Center, Pittsburgh, PA 15235
J. GREGGI
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
F.A. SHIRLAND
Affiliation:
Westinghouse R&D Center, Pittsburgh, PA 15235
Get access

Abstract

A series of MBE grown CdTe films were grown on (100) InSb substrates. The substrate temperature, Ts, was varied from 170° to 285°C in eleven steps. Low temperature (∿2K) photoluminescence measurements and TEM have been combined to show a strong correlation between defect density and the details of the luminescence spectra. A natural division is obtained for samples grown with substrate temperatures from 285°C to 250°C (Region I) and from 225°C to 170°C (Region II).

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wood, S., Greggi, J., Jr., Farrow, R.F.C., Takei, W.J., Shirland, F.A., and Noreika, A.J., J. Appl. Phys. 55, 4235 (1984).Google Scholar
2. Farrow, R.F.C., Jones, G.R., Williams, G.M., and Young, I.M., Appl. Phys. Lett. 39, 954 (1981).Google Scholar
3. Feng, Z.C., Mascarenhas, A., Choyke, W.J., Farrow, R.F.C., Shirland, F.A. and Takei, W.J., Appl. Phys. Lett. 47, 24 (1985).Google Scholar
4. Bicknell, R.N., Giles-Taylor, N.C., Yanka, R.W., and Schetzina, J.F., J. Vac. Sci. Technol. B2, 417 (1984).Google Scholar
5. Mar, H.A. and Salansky, N., J. Appl. Phys. 56, 2369 (1984).CrossRefGoogle Scholar
6. Nishitani, K., Ohkata, R., and Murotani, T., J. Electron. Mater. 12, 619 (1983).Google Scholar
7. Mar, H.A., Chee, K.T., and Salansky, N., Appl. Phys. Lett. 44, 237 (1984).Google Scholar
8. Edwards, S.T., Schreiner, A.F., Myers, T.M., and Schetzina, J.F., J. Appl. Phys. 54, 6785 (1983).Google Scholar
9. Farrow, R.F.C., Wood, S., Greggi, J.C., Jr., Takei, W.J., and Shirland, F.A., J. Vac. Sci. Technol. 83, 681 (1985).Google Scholar
10. Zanio, K., “Cadmium Telluride,” in Semiconductors and Semimetals, edited by Willardson, R.K. and A.C. Beer (Academic Press, New York, 1978), Vol.13, pp. 100, 133.Google Scholar
11. Myers, T.H., Schetzina, J.F., Edwards, S.T., and Schreiner, A.F., J. Appl. Phys. 54, 4232 (1983).Google Scholar
12.R.N Bicknell, Myers, T.H., and Schetzina, J.F., J. Vac. Sci. Technol. A2, 423 (1984).Google Scholar
13. Chew, N.G., Cullis, A.G., and Williams, G.M., Appl. Phys. Lett. 45, 1090 (1984).CrossRefGoogle Scholar