Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:52:58.918Z Has data issue: false hasContentIssue false

Twist-Stretch Elasticity of DNA

Published online by Cambridge University Press:  10 February 2011

Randall D. Kamien
Affiliation:
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
T. C. Lubensky
Affiliation:
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
Philip Nelson
Affiliation:
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
Corey S. O'Hern
Affiliation:
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, [email protected]
Get access

Abstract

The symmetries of the DNA double helix require a new term in its linear response to stress: the coupling between twist and stretch. Recent experiments with torsionally-constrained single molecules give the first direct measurement of this important material parameter. We extract its value from a recent experiment of Strick et al. and find rough agreement with an independent experimental estimate recently given by Marko. We also present a very simple microscopic theory predicting a value comparable to the one observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kamien, R., Lubensky, T., Nelson, P., and O'Hern, C., “Direct Determination of DNA Twist-Stretch Coupling”, (1996), preprint.Google Scholar
2. Record, M., Mazur, S., Melancon, P., Roe, J., Shaner, S., and Unger, L., Annu. Rev. Biochem. 50, 997 (1981).Google Scholar
3. Benham, C., Biopolymers 22, 2477 (1983).Google Scholar
4. Smith, S., Finzi, L., and Bustamante, C., Science 258, 1122 (1992).Google Scholar
5. Bustamante, C., Marko, J., Siggia, E., and Smith, S., Science 265, 1599 (1994).Google Scholar
6. Marko, J. F. and Siggia, E. D., Macromolecules 28, 8759 (1995).Google Scholar
7. Smith, S., Cui, Y., and Bustamante, C., Science 271, 795 (1996).Google Scholar
8. Wang, M. D., Yin, H., Landick, R., Gelles, J., and Block, S. M., “Stretching DNA with optical tweezers”, Biophys. J., (1997), in press.Google Scholar
9. Landau, L. and Lifshitz, E., Theory of Elasticity, 3rd ed. (Pergamon, London, 1986), pp. 5986.Google Scholar
10. Marko, J. F. and Siggia, E. D., Macromolecules 27, 981 (1994).Google Scholar
11. Strick, T., Allemand, J., Bensimon, D., Bensimon, A., and Croquette, V., Science 271, 1835 (1996).Google Scholar
12. Marko, J., “Stretching must twist DNA”, 1996, preprint.Google Scholar
13. Calladme, C. and Drew, H., Understanding DNA: the molecule and how it works (Academic, London, 1992).Google Scholar
14. Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J.-L., Chatenay, D., and Caron, F., Science 271, 792 (1996).Google Scholar
15. Saenger, W., Principles of Nucleic Acid Structure (Springer-Verlag, New York, 1984), pp. 225226.Google Scholar
16. Marko, J. F. and Siggia, E. D., Phys. Rev. E 52, 2912 (1995).Google Scholar