Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T09:24:06.709Z Has data issue: false hasContentIssue false

Twinning Structure of {113} Defects in High-Dose Oxygen Implanted Silicon-on-Insulator Material.

Published online by Cambridge University Press:  25 February 2011

S. Visitserngtrakul
Affiliation:
Department of Chemical, Bio and Material Engineering, Arizona State University, Tempe, AZ 85387
J. Barry
Affiliation:
Electron Microscope Centre, University of Queensland, St. Lucia, Brisbane, Queensland 4067, Australia.
S. Krause
Affiliation:
Department of Chemical, Bio and Material Engineering, Arizona State University, Tempe, AZ 85387
Get access

Abstract

Conventional and high resolution electron microscopy (HREM) were used to study the structure of the {113} defects in high-dose oxygen implanted silicon. The defects are created with a density of 1011 cm-2 below the buried oxide layer in the substrate region. The {113} defects are similar to the ribbon-like defects in bulk silicon. Our HREM observations show that two crystalline phases are present in the defect. Portions of the defects exhibit the original cubic diamond structure which is twinned across {115} planes. The atomic model shows that the {115} interface is a coherent interface with alternating five- and seven-membered rings and no dangling bonds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 van Ommen, A.H., Koek, B.H., and Viegers, M.P.A., Appl. Phys. Lett. 49, 628 (1986).Google Scholar
2 De Veirman, A., Yallup, K., Van Landuyt, J., Maes, H.E., and Amelinckx, S., Inst. Phys. Conf. Ser. 87, 403 (1987).Google Scholar
3 Krause, S. J., Jung, C. O., Ravi, T. S., Wilson, S., and Burke, D. E. in Silicon-on-Insulator and, Buried Metals in Semiconductors, edited by Sturm, J.C., Chen, C.K., Pfeiffer, L., Hemment, P.L.F. (Mat. Res. Soc. Proc. 107, Pittsburgh, PA 1988) pp 93104.Google Scholar
4 Ravi, T.S., Jung, C.O., Burke, D.E., and Krause, S.J. in Proc. 47th Elect. Mic. Soc. Amer., edited G.W. Bailey, San Francisco Press, Inc., (1989) pp 602-603.Google Scholar
5 Bourret, A., Inst. Phys. Conf. Ser. 87, 39 (1987).Google Scholar
6 Bourret, A., Thibault-Desseaux, J., Seidman, D.N., J. Appl. Phys. 55, 825 (1984).Google Scholar
7 Bender, H., Phys. Stat. Sol. (a) 86, 245 (1984).Google Scholar
8 Reiche, M. and Breitenstein, O., Phys. Stat. Sol. (a) 101,K97 (1987).Google Scholar
9 Bender, H. and Vanhellemont, J., Phys. stat. Sol. (a) 107, 455 (1988).Google Scholar
10 Salisbury, I.G. and Loretto, M.H., Phil. Mag., A39, 317 (1979).Google Scholar
11 Tan, T.Y., Foil, H., and Hu, S.M., Phil. Mag. A44, 127 (1981).Google Scholar
12 Pirouz, P., Chaim, R., and Dahmen, U. in Defects in Electronic Materials, edited by Stavola, M., Pearton, S.J., Davies, G. (Mat. Res. Soc. Proc. 104, Pittsburgh, PA 1988) p. 133.Google Scholar
13 Pirouz, P., Dahmen, U., Westmacott, K.H., and Chaim, R., Acta Metall. (1989) in press.Google Scholar
14 Wittkower, A. and Guerra, M., Nucl. Instr. and Meth. B37/38, 512517 (1989).Google Scholar
15 Hetherington, C.J.D., Dahmen, U., Pirouz, P., and Westmacott, K.H. in Proc. 47th Elect. Mic. Soc. Amer., edited G.W. Bailey, San Francisco Press, Inc., (1989) pp 132-133.Google Scholar