Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:28:49.479Z Has data issue: false hasContentIssue false

Tunable Porous Silicon Photonic Band Gap Structures

Published online by Cambridge University Press:  15 March 2011

J. Eduardo Lugo
Affiliation:
Centro de Investigación en Energóa, Universidad Nacional Autónoma de México, A.P. 34, 62580 Temixco, Mor. México
Herman A. Lopez
Affiliation:
Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, U.S.A.
Selena Chan
Affiliation:
Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, U.S.A.
Philippe M. Fauchet
Affiliation:
Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627, U.S.A.
Get access

Abstract

The tuning of one-dimensional photonic band gap structures based on porous silicon will be presented. The photonic structures are prepared by applying a periodic pulse of current density to form alternating high and low porosity layers. The width and position of the photonic bandgap are determined by the dielectric function of each layer, which depends on porosity, and their thickness. In this work we show that by controlling the oxidation of the porous silicon structures, it is possible to tune the photonic bandgap towards shorter wavelengths. The formation of silicon dioxide during oxidation causes a reduction of the refractive index, which induces the blue shift. The photonic band gap is determined experimentally by taking the total reflection of the structures. In order to understand the tuning of the photonic band gap, we developed a geometrical model using the effective medium approximation to calculate the dielectric function of each of the oxidized porous silicon layers. The two key parameters are the porosity and the parameter β, defined as the ratio between the silicon dioxide thickness and the pore radius before oxidation. Choosing the parameter β, to fit the experimental photonic band gap of the oxidized structures, we extract the fraction of oxide that is present. For example, the measured 240 nm blue shift of a photonic bandgap that was centered at 1.7 microns corresponds to the transformation of 30% of the structure into silicon dioxide. A similar approach can be used for oxidized two-dimensional porous silicon photonic structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M., Nature, 384, 338 (1996).Google Scholar
2. Berger, M.G., Thönissen, M., Arens-Fisher, R., Münder, H., Lüth, H., Arntzen, M., and Theiss, W., Thin Solid Films, 255, 313 (1995).Google Scholar
3. Berger, M.G., Dieker, C., Thönissen, M., Vescan, L., Lüth, H., Münder, H., Wernke, M., and Grosse, P., J. Phys. D, 27, 1333 (1994).Google Scholar
4. Frohnhoff, S. and Berger, M.G., Adv. Mater., 6, 963 (1994).Google Scholar
5. Araki, M., Koyama, H., and Koshida, Nobuyoshi, Jpn. J. Appl. Phys., 35, 1041 (1996).Google Scholar
6. Pavesi, L., Riv. Nuovo Cimento, 20, 1 (1997).Google Scholar
7. Zangooie, S., Jansson, R., and Arwin, H., J. Vac. Sci. Technol. A, 16, 2901 (1998).Google Scholar
8. Chan, S. and Fauchet, P.M., Appl. Phys. Lett., 75, 276 (1999).Google Scholar
9. Grüning, U., Lehmann, V., and Engelhardt, C.M., Appl. Phys. Lett, 66, 3254 (1995).Google Scholar
10. Grüning, U., Lehmann, V., Ottow, S., and Busch, K., Appl. Phys. Lett., 68, 747 (1996).Google Scholar
11. Rowson, S., Chelnokov, A., and Lourtioz, J.-M., Electronics Letters, 35, 753 (1999); Journal of Lightwave Technology, 17, 1989 (1999).Google Scholar
12. Leonard, S.W., Mondia, J.P., Driel, H.M. van, Toader, O., John, S., Bush, K., Birner, A., Gösele, U., and Lehmann, V., Physical Review B, 61, 2389 (2000).Google Scholar
13. Lopez, A., Chan, S., Tsybeskov, L., Koyama, H., Bondarenko, V.P., and Fauchet, P.M., Mat. Res. Soc. Symp. Proc., 356, 135 (1999).Google Scholar
14. Fukaya, N., Ohsaki, D. and Baba, T., Japanese Journal of Applied Physics part 1, 39, 2619 (2000).Google Scholar
15. Miyazaki, H.T., Miyazaki, H., Ohtaka, K. and Sato, T., Journal of Applied Physics, 87, 7152 (2000).Google Scholar
16. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O. and Driel, H.M. van, Nature, 405, 437 (2000).Google Scholar
17. Benisty, H., Weisbuch, C., Labilloy, D. and Rattier, M., Applied Surface Science, 164, 205 (2000).Google Scholar
18. Joannopoulos, J.D., Brazilian Journal of Physics, 26, 58 (1996); J.D. Joannopoulos, R.D. Meade and J.N. Winn, Photonics Crystals Molding the Flow of light, (Princeton University Press, New Jersey, 1995), p. 128.Google Scholar
19. Plihal, M., Shambrook, A., and Maradudin, A.A., Optics Communications, 80, 199 (1991).Google Scholar
20. Plihal, M., and Maradudin, A.A., Physical Review B, 44, 8565 (1991).Google Scholar
21. Maradudin, A.A., Journal of Modern Optics, 41, 275 (1994).Google Scholar
22. Lugo, J.E., Lopez, H.A., Chan, S., and Fauchet, P.M., Porous Silicon Multilayers Structures:/A Band Gap Analysis And Applications, (To be published).Google Scholar