Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T02:29:34.149Z Has data issue: false hasContentIssue false

TTF derivative of 2,5-aromatic disubstituted pyrroles, experimental and theoretical study

Published online by Cambridge University Press:  05 July 2016

Lioudmila Fomina
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U. A. Postal 70-360, Delegación Coyoacán. C.P. 04510. México D.F., México
Christopher León
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U. A. Postal 70-360, Delegación Coyoacán. C.P. 04510. México D.F., México
Montserrat Bizarro
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U. A. Postal 70-360, Delegación Coyoacán. C.P. 04510. México D.F., México
Alejandro Baeza
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, Circuito, Escolar s/n, Ciudad Universitaria, Coyoacán 04510, México D.F., México
Victoria Gómez-Vidales
Affiliation:
Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán 04510, México D.F., México
Luis E. Sansores
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U. A. Postal 70-360, Delegación Coyoacán. C.P. 04510. México D.F., México
Roberto Salcedo
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n. C.U. A. Postal 70-360, Delegación Coyoacán. C.P. 04510. México D.F., México
Get access

Abstract

In the last decades the interest in organic conductors has growth, so they have become the object of study of many research groups that are interested in developing new materials with important conducting properties. The charge transfer complexes (CTC) represent an important kind of organic conductors, because they exhibit high conductivity values, as well as versatility for their design.

In this work, the charge transfer complex (CTC) formed by substituted pyrrole and tetrathiofulvalene (TTF) was obtained by means electrochemical synthesis, the resultant colored mix was characterized by Mass spectrometry, NMR and EPR studies, its intrinsic electronic behavior was measured by a four point probe method, besides theoretical calculations were carried out on the possible structures of the resultant molecular adduct. All the results show that there is a net transfer of an electron between both organic moieties in a solution giving place to a semiconductor species.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mallaras, G.G., Biochim. Et Biophys. Acta, General Subjects 1830, 4286 (2013).CrossRefGoogle Scholar
Saeki, A., Koizumi, Y., Aida, T. and Seki, S., Acc. Chem. Res. 45, 1193 (2012).CrossRefGoogle Scholar
Bendikov, M., Wudl, F. and Perepichka, D.F., Chem. Rev. 104, 4891(2004).CrossRefGoogle Scholar
Coropceanu, V., Cornil, J., da Silva-Filho, D.A.. Olivier, Y., Silbey, R., and Brédas, J.C., Chem. Rev. 104, 926(2004).Google Scholar
Bryce, M.R., J. Mater. Chem. 10, 589 (2000).CrossRefGoogle Scholar
Nielsen, M.B., Lomholt, C., and Becher, J., Chem. Soc. Rev. 29, 153 (2000).CrossRefGoogle Scholar
Segura, J.L., and Martín, N., Angew. Chem., Int. Ed. 40, 1372 (2001).3.0.CO;2-I>CrossRefGoogle Scholar
Coffen, D.L., Chambers, J.Q., Williams, D.R., Garrett, P.E., and Canfield, N.D., J. Am. Chem. Soc. 93, 2258 (1971).CrossRefGoogle Scholar
Hünig, S., Kiesslich, G., Sceutzow, D., Zhrandik, R. and Carsky, P., Int. J. Sulfur Chem., Part C 109 (1971).Google Scholar
Wudl, F., Smith, G.M. and Hufnagel, E.J., J. Chem. Soc., Chem.Commun. 1453 (1970).Google Scholar
Ferraris, J., Cowan, D.O., Walatka, V.V. Jr, Perlstein, J.H., J. Am. Chem. Soc. 95, 948 (1973).CrossRefGoogle Scholar
Brédas, J.C., Beljonne, D., Coropceanu, V. and Cornil, J., Chem. Rev. 104, 4971 (2004).CrossRefGoogle Scholar
Fomina, L., Zaragoza- Galán, G., Bizarro, M., Godínez- Sánchez, J., Zaragoza, I.P. and Salcedo, R., Mater. Chem. and Phys. 124, 257 (2010).CrossRefGoogle Scholar
Huerta-Angeles, G., Fomina, L., Rumsh, L., Zolotukhin, M. G., Polymer Bulletín, 57, 433 (2006).CrossRefGoogle Scholar
Becke, A.D., Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
Perdew, J. P. & Wang, Y., Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian 09, Revision A.1, Gaussian, Inc.,Wallingford CT, 2009.Google Scholar
Shostakovskii, M.F.. & Bogdanova, A.V.,The Chemistry of Diacetylenes, John Wiley and Sons, New York, 1974.Google Scholar
Hay, A.S., J. Org. Chem. 27, 3320 (1962).CrossRefGoogle Scholar
Schulte, K.E. & Reisch, J., Angew. Chem. 73, 241 (1961).Google Scholar